-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathcomponents.py
537 lines (422 loc) · 20 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import theano
import theano.tensor as T
import numpy as np
import logging
import copy
from nn.layers.embeddings import Embedding
from nn.layers.core import Dense, Layer
from nn.layers.recurrent import BiLSTM, LSTM, CondAttLSTM
from nn.utils.theano_utils import ndim_itensor, tensor_right_shift, ndim_tensor, alloc_zeros_matrix, shared_zeros
import nn.initializations as initializations
import nn.activations as activations
import nn.optimizers as optimizers
import config
from lang.grammar import Grammar
from parse import *
from astnode import *
class PointerNet(Layer):
def __init__(self, name='PointerNet'):
super(PointerNet, self).__init__()
self.dense1_input = Dense(config.encoder_hidden_dim, config.ptrnet_hidden_dim, activation='linear', name='Dense1_input')
self.dense1_h = Dense(config.decoder_hidden_dim + config.encoder_hidden_dim, config.ptrnet_hidden_dim, activation='linear', name='Dense1_h')
self.dense2 = Dense(config.ptrnet_hidden_dim, 1, activation='linear', name='Dense2')
self.params += self.dense1_input.params + self.dense1_h.params + self.dense2.params
self.set_name(name)
def __call__(self, query_embed, query_token_embed_mask, decoder_states):
query_embed_trans = self.dense1_input(query_embed)
h_trans = self.dense1_h(decoder_states)
query_embed_trans = query_embed_trans.dimshuffle((0, 'x', 1, 2))
h_trans = h_trans.dimshuffle((0, 1, 'x', 2))
# (batch_size, max_decode_step, query_token_num, ptr_net_hidden_dim)
dense1_trans = T.tanh(query_embed_trans + h_trans)
scores = self.dense2(dense1_trans).flatten(3)
scores = T.exp(scores - T.max(scores, axis=-1, keepdims=True))
scores *= query_token_embed_mask.dimshuffle((0, 'x', 1))
scores = scores / T.sum(scores, axis=-1, keepdims=True)
return scores
class Hyp:
def __init__(self, *args):
if isinstance(args[0], Hyp):
hyp = args[0]
self.grammar = hyp.grammar
self.tree = hyp.tree.copy()
self.t = hyp.t
self.hist_h = list(hyp.hist_h)
self.log = hyp.log
self.has_grammar_error = hyp.has_grammar_error
else:
assert isinstance(args[0], Grammar)
grammar = args[0]
self.grammar = grammar
self.tree = DecodeTree(grammar.root_node.type)
self.t=-1
self.hist_h = []
self.log = ''
self.has_grammar_error = False
self.score = 0.0
self.__frontier_nt = self.tree
self.__frontier_nt_t = -1
def __repr__(self):
return self.tree.__repr__()
def can_expand(self, node):
if self.grammar.is_value_node(node):
# if the node is finished
if node.value is not None and node.value.endswith('<eos>'):
return False
return True
elif self.grammar.is_terminal(node):
return False
# elif node.type == 'epsilon':
# return False
# elif is_terminal_ast_type(node.type):
# return False
# if node.type == 'root':
# return True
# elif inspect.isclass(node.type) and issubclass(node.type, ast.AST) and not is_terminal_ast_type(node.type):
# return True
# elif node.holds_value and not node.label.endswith('<eos>'):
# return True
return True
def apply_rule(self, rule, nt=None):
if nt is None:
nt = self.frontier_nt()
# assert rule.parent.type == nt.type
if rule.parent.type != nt.type:
self.has_grammar_error = True
self.t += 1
# set the time step when the rule leading by this nt is applied
nt.t = self.t
# record the ApplyRule action that is used to expand the current node
nt.applied_rule = rule
for child_node in rule.children:
child = DecodeTree(child_node.type, child_node.label, child_node.value)
# if is_builtin_type(rule.parent.type):
# child.label = None
# child.holds_value = True
nt.add_child(child)
def append_token(self, token, nt=None):
if nt is None:
nt = self.frontier_nt()
self.t += 1
if nt.value is None:
# this terminal node is empty
nt.t = self.t
nt.value = token
else:
nt.value += token
def frontier_nt_helper(self, node):
if node.is_leaf:
if self.can_expand(node):
return node
else:
return None
for child in node.children:
result = self.frontier_nt_helper(child)
if result:
return result
return None
def frontier_nt(self):
if self.__frontier_nt_t == self.t:
return self.__frontier_nt
else:
_frontier_nt = self.frontier_nt_helper(self.tree)
self.__frontier_nt = _frontier_nt
self.__frontier_nt_t = self.t
return _frontier_nt
def get_action_parent_t(self):
"""
get the time step when the parent of the current
action was generated
WARNING: 0 will be returned if parent if None
"""
nt = self.frontier_nt()
# if nt is a non-finishing leaf
# if nt.holds_value:
# return nt.t
if nt.parent:
return nt.parent.t
else:
return 0
# def get_action_parent_tree(self):
# """
# get the parent tree
# """
# nt = self.frontier_nt()
#
# # if nt is a non-finishing leaf
# if nt.holds_value:
# return nt
#
# if nt.parent:
# return nt.parent
# else:
# return None
class CondAttLSTM(Layer):
"""
Conditional LSTM with Attention
"""
def __init__(self, input_dim, output_dim,
context_dim, att_hidden_dim,
init='glorot_uniform', inner_init='orthogonal', forget_bias_init='one',
activation='tanh', inner_activation='sigmoid', name='CondAttLSTM'):
super(CondAttLSTM, self).__init__()
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.context_dim = context_dim
self.input_dim = input_dim
# regular LSTM layer
self.W_i = self.init((input_dim, self.output_dim))
self.U_i = self.inner_init((self.output_dim, self.output_dim))
self.C_i = self.inner_init((self.context_dim, self.output_dim))
self.H_i = self.inner_init((self.output_dim, self.output_dim))
self.P_i = self.inner_init((self.output_dim, self.output_dim))
self.b_i = shared_zeros((self.output_dim))
self.W_f = self.init((input_dim, self.output_dim))
self.U_f = self.inner_init((self.output_dim, self.output_dim))
self.C_f = self.inner_init((self.context_dim, self.output_dim))
self.H_f = self.inner_init((self.output_dim, self.output_dim))
self.P_f = self.inner_init((self.output_dim, self.output_dim))
self.b_f = self.forget_bias_init((self.output_dim))
self.W_c = self.init((input_dim, self.output_dim))
self.U_c = self.inner_init((self.output_dim, self.output_dim))
self.C_c = self.inner_init((self.context_dim, self.output_dim))
self.H_c = self.inner_init((self.output_dim, self.output_dim))
self.P_c = self.inner_init((self.output_dim, self.output_dim))
self.b_c = shared_zeros((self.output_dim))
self.W_o = self.init((input_dim, self.output_dim))
self.U_o = self.inner_init((self.output_dim, self.output_dim))
self.C_o = self.inner_init((self.context_dim, self.output_dim))
self.H_o = self.inner_init((self.output_dim, self.output_dim))
self.P_o = self.inner_init((self.output_dim, self.output_dim))
self.b_o = shared_zeros((self.output_dim))
self.params = [
self.W_i, self.U_i, self.b_i, self.C_i, self.H_i, self.P_i,
self.W_c, self.U_c, self.b_c, self.C_c, self.H_c, self.P_c,
self.W_f, self.U_f, self.b_f, self.C_f, self.H_f, self.P_f,
self.W_o, self.U_o, self.b_o, self.C_o, self.H_o, self.P_o,
]
# attention layer
self.att_ctx_W1 = self.init((context_dim, att_hidden_dim))
self.att_h_W1 = self.init((output_dim, att_hidden_dim))
self.att_b1 = shared_zeros((att_hidden_dim))
self.att_W2 = self.init((att_hidden_dim, 1))
self.att_b2 = shared_zeros((1))
self.params += [
self.att_ctx_W1, self.att_h_W1, self.att_b1,
self.att_W2, self.att_b2
]
# attention over history
self.hatt_h_W1 = self.init((output_dim, att_hidden_dim))
self.hatt_hist_W1 = self.init((output_dim, att_hidden_dim))
self.hatt_b1 = shared_zeros((att_hidden_dim))
self.hatt_W2 = self.init((att_hidden_dim, 1))
self.hatt_b2 = shared_zeros((1))
self.params += [
self.hatt_h_W1, self.hatt_hist_W1, self.hatt_b1,
self.hatt_W2, self.hatt_b2
]
self.set_name(name)
def _step(self,
t, xi_t, xf_t, xo_t, xc_t, mask_t, parent_t,
h_tm1, c_tm1, hist_h,
u_i, u_f, u_o, u_c,
c_i, c_f, c_o, c_c,
h_i, h_f, h_o, h_c,
p_i, p_f, p_o, p_c,
att_h_w1, att_w2, att_b2,
context, context_mask, context_att_trans,
b_u):
# context: (batch_size, context_size, context_dim)
# (batch_size, att_layer1_dim)
h_tm1_att_trans = T.dot(h_tm1, att_h_w1)
# h_tm1_att_trans = theano.printing.Print('h_tm1_att_trans')(h_tm1_att_trans)
# (batch_size, context_size, att_layer1_dim)
att_hidden = T.tanh(context_att_trans + h_tm1_att_trans[:, None, :])
# (batch_size, context_size, 1)
att_raw = T.dot(att_hidden, att_w2) + att_b2
att_raw = att_raw.reshape((att_raw.shape[0], att_raw.shape[1]))
# (batch_size, context_size)
ctx_att = T.exp(att_raw - T.max(att_raw, axis=-1, keepdims=True))
if context_mask:
ctx_att = ctx_att * context_mask
ctx_att = ctx_att / T.sum(ctx_att, axis=-1, keepdims=True)
# (batch_size, context_dim)
ctx_vec = T.sum(context * ctx_att[:, :, None], axis=1)
# t = theano.printing.Print('t')(t)
##### attention over history #####
def _attention_over_history():
hist_h_mask = T.zeros((hist_h.shape[0], hist_h.shape[1]), dtype='int8')
hist_h_mask = T.set_subtensor(hist_h_mask[:, T.arange(t)], 1)
hist_h_att_trans = T.dot(hist_h, self.hatt_hist_W1) + self.hatt_b1
h_tm1_hatt_trans = T.dot(h_tm1, self.hatt_h_W1)
hatt_hidden = T.tanh(hist_h_att_trans + h_tm1_hatt_trans[:, None, :])
hatt_raw = T.dot(hatt_hidden, self.hatt_W2) + self.hatt_b2
hatt_raw = hatt_raw.reshape((hist_h.shape[0], hist_h.shape[1]))
# hatt_raw = theano.printing.Print('hatt_raw')(hatt_raw)
hatt_exp = T.exp(hatt_raw - T.max(hatt_raw, axis=-1, keepdims=True)) * hist_h_mask
# hatt_exp = theano.printing.Print('hatt_exp')(hatt_exp)
# hatt_exp = hatt_exp.flatten(2)
h_att_weights = hatt_exp / (T.sum(hatt_exp, axis=-1, keepdims=True) + 1e-7)
# h_att_weights = theano.printing.Print('h_att_weights')(h_att_weights)
# (batch_size, output_dim)
_h_ctx_vec = T.sum(hist_h * h_att_weights[:, :, None], axis=1)
return _h_ctx_vec
h_ctx_vec = T.switch(t,
_attention_over_history(),
T.zeros_like(h_tm1))
# h_ctx_vec = theano.printing.Print('h_ctx_vec')(h_ctx_vec)
##### attention over history #####
##### feed in parent hidden state #####
if not config.parent_hidden_state_feed:
t = 0
par_h = T.switch(t,
hist_h[T.arange(hist_h.shape[0]), parent_t, :],
T.zeros_like(h_tm1))
##### feed in parent hidden state #####
if config.tree_attention:
i_t = self.inner_activation(
xi_t + T.dot(h_tm1 * b_u[0], u_i) + T.dot(ctx_vec, c_i) + T.dot(par_h, p_i) + T.dot(h_ctx_vec, h_i))
f_t = self.inner_activation(
xf_t + T.dot(h_tm1 * b_u[1], u_f) + T.dot(ctx_vec, c_f) + T.dot(par_h, p_f) + T.dot(h_ctx_vec, h_f))
c_t = f_t * c_tm1 + i_t * self.activation(
xc_t + T.dot(h_tm1 * b_u[2], u_c) + T.dot(ctx_vec, c_c) + T.dot(par_h, p_c) + T.dot(h_ctx_vec, h_c))
o_t = self.inner_activation(
xo_t + T.dot(h_tm1 * b_u[3], u_o) + T.dot(ctx_vec, c_o) + T.dot(par_h, p_o) + T.dot(h_ctx_vec, h_o))
else:
i_t = self.inner_activation(
xi_t + T.dot(h_tm1 * b_u[0], u_i) + T.dot(ctx_vec, c_i) + T.dot(par_h, p_i)) # + T.dot(h_ctx_vec, h_i)
f_t = self.inner_activation(
xf_t + T.dot(h_tm1 * b_u[1], u_f) + T.dot(ctx_vec, c_f) + T.dot(par_h, p_f)) # + T.dot(h_ctx_vec, h_f)
c_t = f_t * c_tm1 + i_t * self.activation(
xc_t + T.dot(h_tm1 * b_u[2], u_c) + T.dot(ctx_vec, c_c) + T.dot(par_h, p_c)) # + T.dot(h_ctx_vec, h_c)
o_t = self.inner_activation(
xo_t + T.dot(h_tm1 * b_u[3], u_o) + T.dot(ctx_vec, c_o) + T.dot(par_h, p_o)) # + T.dot(h_ctx_vec, h_o)
h_t = o_t * self.activation(c_t)
h_t = (1 - mask_t) * h_tm1 + mask_t * h_t
c_t = (1 - mask_t) * c_tm1 + mask_t * c_t
new_hist_h = T.set_subtensor(hist_h[:, t, :], h_t)
return h_t, c_t, ctx_vec, new_hist_h
def _for_step(self,
xi_t, xf_t, xo_t, xc_t, mask_t,
h_tm1, c_tm1,
context, context_mask, context_att_trans,
hist_h, hist_h_att_trans,
b_u):
# context: (batch_size, context_size, context_dim)
# (batch_size, att_layer1_dim)
h_tm1_att_trans = T.dot(h_tm1, self.att_h_W1)
# (batch_size, context_size, att_layer1_dim)
att_hidden = T.tanh(context_att_trans + h_tm1_att_trans[:, None, :])
# (batch_size, context_size, 1)
att_raw = T.dot(att_hidden, self.att_W2) + self.att_b2
# (batch_size, context_size)
ctx_att = T.exp(att_raw).reshape((att_raw.shape[0], att_raw.shape[1]))
if context_mask:
ctx_att = ctx_att * context_mask
ctx_att = ctx_att / T.sum(ctx_att, axis=-1, keepdims=True)
# (batch_size, context_dim)
ctx_vec = T.sum(context * ctx_att[:, :, None], axis=1)
##### attention over history #####
if hist_h:
hist_h = T.stack(hist_h).dimshuffle((1, 0, 2))
hist_h_att_trans = T.stack(hist_h_att_trans).dimshuffle((1, 0, 2))
h_tm1_hatt_trans = T.dot(h_tm1, self.hatt_h_W1)
hatt_hidden = T.tanh(hist_h_att_trans + h_tm1_hatt_trans[:, None, :])
hatt_raw = T.dot(hatt_hidden, self.hatt_W2) + self.hatt_b2
hatt_raw = hatt_raw.flatten(2)
h_att_weights = T.nnet.softmax(hatt_raw)
# (batch_size, output_dim)
h_ctx_vec = T.sum(hist_h * h_att_weights[:, :, None], axis=1)
else:
h_ctx_vec = T.zeros_like(h_tm1)
##### attention over history #####
i_t = self.inner_activation(xi_t + T.dot(h_tm1 * b_u[0], self.U_i) + T.dot(ctx_vec, self.C_i) + T.dot(h_ctx_vec, self.H_i))
f_t = self.inner_activation(xf_t + T.dot(h_tm1 * b_u[1], self.U_f) + T.dot(ctx_vec, self.C_f) + T.dot(h_ctx_vec, self.H_f))
c_t = f_t * c_tm1 + i_t * self.activation(xc_t + T.dot(h_tm1 * b_u[2], self.U_c) + T.dot(ctx_vec, self.C_c) + T.dot(h_ctx_vec, self.H_c))
o_t = self.inner_activation(xo_t + T.dot(h_tm1 * b_u[3], self.U_o) + T.dot(ctx_vec, self.C_o) + T.dot(h_ctx_vec, self.H_o))
h_t = o_t * self.activation(c_t)
h_t = (1 - mask_t) * h_tm1 + mask_t * h_t
c_t = (1 - mask_t) * c_tm1 + mask_t * c_t
# ctx_vec = theano.printing.Print('ctx_vec')(ctx_vec)
return h_t, c_t, ctx_vec
def __call__(self, X, context, parent_t_seq, init_state=None, init_cell=None, hist_h=None,
mask=None, context_mask=None,
dropout=0, train=True, srng=None,
time_steps=None):
assert context_mask.dtype == 'int8', 'context_mask is not int8, got %s' % context_mask.dtype
# (n_timestep, batch_size)
mask = self.get_mask(mask, X)
# (n_timestep, batch_size, input_dim)
X = X.dimshuffle((1, 0, 2))
retain_prob = 1. - dropout
B_w = np.ones((4,), dtype=theano.config.floatX)
B_u = np.ones((4,), dtype=theano.config.floatX)
if dropout > 0:
logging.info('applying dropout with p = %f', dropout)
if train:
B_w = srng.binomial((4, X.shape[1], self.input_dim), p=retain_prob,
dtype=theano.config.floatX)
B_u = srng.binomial((4, X.shape[1], self.output_dim), p=retain_prob,
dtype=theano.config.floatX)
else:
B_w *= retain_prob
B_u *= retain_prob
# (n_timestep, batch_size, output_dim)
xi = T.dot(X * B_w[0], self.W_i) + self.b_i
xf = T.dot(X * B_w[1], self.W_f) + self.b_f
xc = T.dot(X * B_w[2], self.W_c) + self.b_c
xo = T.dot(X * B_w[3], self.W_o) + self.b_o
# (batch_size, context_size, att_layer1_dim)
context_att_trans = T.dot(context, self.att_ctx_W1) + self.att_b1
if init_state:
# (batch_size, output_dim)
first_state = T.unbroadcast(init_state, 1)
else:
first_state = T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1)
if init_cell:
# (batch_size, output_dim)
first_cell = T.unbroadcast(init_cell, 1)
else:
first_cell = T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.output_dim), 1)
if not hist_h:
# (batch_size, n_timestep, output_dim)
hist_h = alloc_zeros_matrix(X.shape[1], X.shape[0], self.output_dim)
if train:
n_timestep = X.shape[0]
time_steps = T.arange(n_timestep, dtype='int32')
# (n_timestep, batch_size)
parent_t_seq = parent_t_seq.dimshuffle((1, 0))
[outputs, cells, ctx_vectors, hist_h_outputs], updates = theano.scan(
self._step,
sequences=[time_steps, xi, xf, xo, xc, mask, parent_t_seq],
outputs_info=[
first_state, # for h
first_cell, # for cell
None, # T.unbroadcast(alloc_zeros_matrix(X.shape[1], self.context_dim), 1), # for ctx vector
hist_h, # for hist_h
],
non_sequences=[
self.U_i, self.U_f, self.U_o, self.U_c,
self.C_i, self.C_f, self.C_o, self.C_c,
self.H_i, self.H_f, self.H_o, self.H_c,
self.P_i, self.P_f, self.P_o, self.P_c,
self.att_h_W1, self.att_W2, self.att_b2,
context, context_mask, context_att_trans,
B_u
])
outputs = outputs.dimshuffle((1, 0, 2))
ctx_vectors = ctx_vectors.dimshuffle((1, 0, 2))
cells = cells.dimshuffle((1, 0, 2))
return outputs, cells, ctx_vectors
def get_mask(self, mask, X):
if mask is None:
mask = T.ones((X.shape[0], X.shape[1]))
mask = T.shape_padright(mask) # (nb_samples, time, 1)
mask = T.addbroadcast(mask, -1) # (time, nb_samples, 1) matrix.
mask = mask.dimshuffle(1, 0, 2) # (time, nb_samples, 1)
mask = mask.astype('int8')
return mask