This repository has been archived by the owner on May 5, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessing.py
129 lines (90 loc) · 3.82 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from os import replace
from nltk.tokenize import sent_tokenize, word_tokenize
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import semantic_search
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st
import random
def get_paragraphs(text):
lines = text.split('\n')
paragraphs = []
max_sents = 10
for line in lines:
sents = sent_tokenize(line)
if len(sents) > max_sents:
left = 0
max_right = len(sents)
while left < max_right:
right = left + 1
while right < max_right and right - left < max_sents and len(' '.join(sents[left:right])) < 2500:
right += 1
if len(' '.join(sents[left:right])) < 3000:
paragraphs += [' '.join(sents[left:right])]
left = right
elif len(sents) >= 2:
paragraphs += [line]
if len(paragraphs) > 200:
paragraphs = random.sample(paragraphs, k=200)
return paragraphs
@st.cache(allow_output_mutation=True)
def init_encoder():
model = SentenceTransformer('all-MiniLM-L6-v2')
return model
@st.cache(allow_output_mutation=True)
def init_autoregressive():
model = AutoModelForCausalLM.from_pretrained('distilgpt2')
return model
def init_tokenizer():
tokenizer = AutoTokenizer.from_pretrained('distilgpt2')
return tokenizer
@st.cache(allow_output_mutation=True)
def get_embeddings(paragraphs):
return st.session_state['encoder_model'].encode(paragraphs)
def get_closest_thoughts(content_embeddings):
return semantic_search(content_embeddings, st.session_state['conceptarium_embeddings'], top_k=3)
def get_skill(results):
scores = [e[0]['score'] for e in results]
return np.mean(scores)
def get_challenge(results, content_paragraphs):
ppls = []
lengths = []
for result_idx, result in enumerate(results):
context = 'Main Points:\n\n- ' + '\n- '.join([st.session_state['conceptarium'][e] for e in reversed([
f['corpus_id'] for f in result])]) + '\n\nSummary\n\n'
target = content_paragraphs[result_idx]
full = context + target
target_len = st.session_state['tokenizer'](
target, return_tensors='pt').input_ids.size(1)
full_ids = st.session_state['tokenizer'](
full, return_tensors='pt').input_ids
truncated_ids = full_ids[0][-1000:].view(1,
full_ids[0][-1000:].size(0))
target_ids = truncated_ids.clone()
target_ids[:, :-target_len] = -100
with torch.no_grad():
outputs = st.session_state['autoregressive_model'](
truncated_ids, labels=target_ids)
neg_log_likelihood = outputs[0] * target_len
ppl = torch.exp(neg_log_likelihood / target_len)
ppls += [ppl.numpy()]
lengths += [len(word_tokenize(target))]
return np.average(ppls, weights=lengths)
def get_raw_challenge(content_paragraphs):
ppls = []
lengths = []
for content_paragraph_idx, content_paragraph in enumerate(content_paragraphs):
target = content_paragraph
target_len = st.session_state['tokenizer'](
target, return_tensors='pt').input_ids.size(1)
target_ids = st.session_state['tokenizer'](
target, return_tensors='pt').input_ids
with torch.no_grad():
outputs = st.session_state['autoregressive_model'](
target_ids, labels=target_ids)
neg_log_likelihood = outputs[0] * target_len
ppl = torch.exp(neg_log_likelihood / target_len)
ppls += [ppl.numpy()]
lengths += [len(word_tokenize(target))]
return np.average(ppls, weights=lengths)