-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerate_data.py
512 lines (413 loc) · 20.2 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
from pathlib import Path
from hmmlearn.hmm import MultinomialHMM
import numpy as np
import random
from functools import partial
from string import ascii_lowercase
from itertools import permutations
from tqdm import tqdm
import pickle
import pandas as pd
from tokenizers import Tokenizer
import contextlib
from copy import deepcopy
from joblib import Parallel, delayed
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.processors import TemplateProcessing
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
import json
def save_tokenizer_json(vocab, filename):
vocab = list(vocab)
vocab = ['[endoftext]'] + vocab
vocab_dict = {v: i for i, v in enumerate(vocab)}
tokenizer_config = {"version":"1.0","truncation": None,"padding": None,"added_tokens":[{"id":0,"special":True,"content":"[endoftext]","single_word":False,"lstrip":False,"rstrip":False,"normalized":False}],"normalizer":None,"pre_tokenizer":{"type":"Whitespace"},"post_processor":None,"decoder":None,"model":{"type":"WordLevel","vocab":vocab_dict,"unk_token":"<unk>"}}
with open(filename, 'w') as f:
json.dump(tokenizer_config, f)
def softmax(x, temp=1.0, axis=None):
x /= temp
if axis is None:
x -= np.amax(x)
return np.exp(x) / np.sum(np.exp(x))
else:
x -= np.expand_dims(np.amax(x, axis=axis), axis=axis)
return np.exp(x) / np.expand_dims(np.sum(np.exp(x), axis=axis), axis=axis)
def generate_transmat_block(
n_components, perm_samples=10, transition_temp=1.0):
mixing = softmax(np.random.rand(perm_samples) - 0.5, transition_temp)
mixing = mixing[:, np.newaxis, np.newaxis]
perm_samples = [np.eye(n_components)[np.random.permutation(n_components)] for i in range(perm_samples)]
transmat = np.sum(mixing * perm_samples, axis=0)
return transmat
def combine_transmats(mat1, mat2):
# combine by tiling mat1 and scaling with mat2
n = mat1.shape[0]
m = mat2.shape[0]
mat = np.zeros((m*n, m*n))
for i in range(m):
for j in range(m):
mat[i*n: (i+1)*n, j*n: (j+1)*n] = mat1 * mat2[i,j]
return mat
@contextlib.contextmanager
def local_seed(seed):
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
def generate_hmm_parameters(
n_values, n_slots, n_symbols, all_values, perm_samples=10, transition_temp=1.0,
start_temp=1.0, value_transmat_id_coeff=0.8, value_transmat_seed=1112):
n_components = n_values * n_slots
# generate parameters for HMM
startprob = softmax(np.random.rand(n_components) - 0.5, start_temp)
slot_transmat = generate_transmat_block(
n_slots, perm_samples=n_slots, transition_temp=transition_temp)
if args.prior_values:
value_transmat = generate_transmat_block(
n_values, perm_samples=n_values, transition_temp=transition_temp)
# bias the value transmat towards identity
value_transmat = (1-value_transmat_id_coeff) * value_transmat + value_transmat_id_coeff * np.eye(n_values)
else:
with local_seed(value_transmat_seed):
value_transmat = generate_transmat_block(
n_values, perm_samples=n_values, transition_temp=transition_temp)
# bias the value transmat towards identity
value_transmat = (1-value_transmat_id_coeff) * value_transmat + value_transmat_id_coeff * np.eye(n_values)
transmat = combine_transmats(slot_transmat, value_transmat)
# this is actually the same for all hmms, given all_values
emissionprob = np.zeros((n_components, n_symbols))
for i in range(n_components):
# deterministic given slot and value vector
slot_idx = i % n_slots
value_idx = i // n_slots
emissionprob[i, all_values[value_idx, slot_idx]] = 1
return startprob, transmat, emissionprob, slot_transmat, value_transmat
def sample_from_hmm(hmm, length, seed=None):
x, h = hmm.sample(n_samples=length, random_state=seed)
return x.T[0], h
def get_default_sampler(hmm):
return partial(sample_from_hmm, hmm=hmm)
def get_default_scorer(hmm):
def score(x):
proba = hmm.predict_proba([x])
proba_last = proba[-1]
proba_next_hidden = hmm.transmat_.T @ proba_last
proba_next_emission = hmm.emissionprob_.T @ proba_next_hidden
return proba_next_emission
return score
def letter_generator(num):
counter = 0
for i in range(1, len(ascii_lowercase)):
for perm in permutations(ascii_lowercase, i):
yield ''.join(perm)
counter += 1
if counter >= num:
return
def apply_vocab(tokens, vocab):
return [vocab[tok] for tok in tokens]
def invert_vocab(tokens, vocab_to_int):
return [vocab_to_int[tok] for tok in tokens]
def save_hmm_list(hmms, save_path):
with open(save_path, 'wb') as f:
pickle.dump(hmms, f)
def generate_hiddens_from_state(hmm, start_state, length):
hiddens = [start_state]
for i in range(length):
hiddens.append(
np.random.choice(hmm.transmat_.shape[1], p=hmm.transmat_[hiddens[-1], :]))
return hiddens
def score(hmm, prompt, start_dist=None):
if start_dist is not None:
old_startprob = hmm.startprob_
hmm.startprob_ = start_dist
prompt = np.asarray(prompt).reshape(-1, 1)
proba = hmm.predict_proba(prompt)
proba_last = proba[-1]
proba_next_hidden = hmm.transmat_.T @ proba_last
proba_next_emission = hmm.emissionprob_.T @ proba_next_hidden
if start_dist is not None:
hmm.startprob_ = old_startprob
return proba_next_emission
def make_hmm_pred(prompt, hmms):
# uniform prior over hmms, take average over prediction probs from each hmm
# probs = Parallel(n_jobs=2)(delayed(score)(hmm) for hmm in hmms)
probs = []
for hmm in hmms:
proba_next_emission = score(hmm, prompt)
probs.append(proba_next_emission)
avg_probs = np.mean(probs, axis=0)
return np.argmax(avg_probs)
def generate_prompts(
type_name, n_prompts, n_examples_per_prompts, num_slots, num_values,
all_values, id_params, id_hmms, random_sample=False, hmms=None,
prompt_length=2):
prompts = []
for n_examples_per_prompt in tqdm(n_examples_per_prompts):
if (prompt_length + 1) * n_examples_per_prompt > 1024:
continue
for i in range(n_prompts):
curr_hmm_idx = None
if random_sample:
start_slot = None
assert(hmms is not None)
curr_hmm_idx = np.random.choice(list(range(len(hmms))))
curr_hmm = hmms[curr_hmm_idx]
if type_name == 'ID_sample':
slots = []
values = []
# choose start such that we sample one start slot
start_slot = np.random.randint(low=1, high=num_slots)
for j in range(n_examples_per_prompt+1):
start_value = np.random.randint(low=0, high=num_values)
start_hidden_idx = start_value * num_slots + start_slot
h = generate_hiddens_from_state(curr_hmm, start_hidden_idx, length=prompt_length-1)
curr_slots = [curr_h % num_slots for curr_h in h]
curr_values = [curr_h // num_slots for curr_h in h]
slots += curr_slots
values += curr_values
# delimiter
slots += [0]
values += [values[-1]]
elif type_name == 'OOD_sample':
# x y delim pattern
slots = []
values = []
for j in range(n_examples_per_prompt+1):
slot_pattern = list(np.random.randint(low=1, high=num_slots, size=prompt_length))
slots += slot_pattern
values += [np.random.randint(low=0, high=num_values)]*(prompt_length)
# delimiter
slots += [0]
values += [values[-1]]
else:
raise ValueError("ID_sample or OOD_sample")
prompt = [all_values[values[j], slots[j]] for j in range(len(slots))]
# remove delimiter
prompt = prompt[:-1]
# test example
test_value = values[-2]
x = prompt[-prompt_length:-1]
slot_pattern = slots[-(prompt_length + 1):]
if start_slot is not None:
start_dist = np.zeros_like(curr_hmm.startprob_)
for c_idx in range(num_values):
start_dist[c_idx * num_slots + start_slot] = 1
start_dist /= start_dist.sum()
else:
start_dist = np.ones_like(curr_hmm.startprob_) / curr_hmm.transmat_.shape[0]
probs = score(curr_hmm, x, start_dist=start_dist)
y = np.argmax(probs)
# remove y
prompt = prompt[:-1]
prompt_ls = prompt
prompt = ' '.join(apply_vocab(prompt, vocab))
x = vocab[x]
y = vocab[y]
else:
if type_name == 'ID':
slot_pattern = [np.random.randint(low=1, high=num_slots)]
idx = np.random.randint(low=0, high=len(id_params))
slot_transmat, value_transmat = id_params[idx]
for _ in range(prompt_length - 1):
slot_pattern.append(np.argmax(slot_transmat[slot_pattern[-1]]))
slot_pattern.append(0)
elif type_name == 'OOD':
# x y delim pattern
slot_pattern = list(np.random.randint(low=1, high=num_slots, size=prompt_length))
slot_pattern += [0]
slots = slot_pattern * (n_examples_per_prompt + 1)
values = []
for j in range(n_examples_per_prompt + 1):
values += [np.random.randint(low=0, high=num_values)]*len(slot_pattern)
prompt = [all_values[values[j], slots[j]] for j in range(len(slots))]
# remove delimiter
prompt = prompt[:-1]
test_value = values[-1]
x = prompt[-prompt_length:-1]
y = prompt[-1]
# remove y
prompt = prompt[:-1]
prompt_ls = prompt
prompt = ' '.join(apply_vocab(prompt, vocab))
x = vocab[x]
y = vocab[y]
res = {
'text': prompt, 'label': y, 'x': x,
'slot_pattern': slot_pattern,
'test_value': test_value,
'hmm_type': type_name, 'n_examples': n_examples_per_prompt,}
if curr_hmm_idx is not None:
res['hmm_id'] = curr_hmm_idx
prompts.append(res)
return prompts
def save_as_json(samples, save_path):
df = pd.DataFrame(samples)
df.to_json(save_path, orient='records', lines=True)
def generate_samples(num_samples, id_hmms, sample_length, random_data=False):
id_samples = []
for i in tqdm(range(num_samples)):
j = np.random.choice(len(id_hmms))
if not random_data:
x, h = sample_from_hmm(id_hmms[j], sample_length)
else:
x = np.random.randint(low=0, high=len(vocab), size=sample_length)
h = np.random.randint(low=0, high=n_components, size=sample_length)
x = apply_vocab(x, vocab)
id_samples.append({'text': ' '.join(x), 'hmm_idx': j, 'hmm_type': 'ID', 'hiddens': h})
return id_samples
def samples_to_raw(samples, out_path):
with open(out_path, 'w') as f:
for sample in samples:
f.write(sample['text'] + ' / ')
def load(path):
with open(path, 'rb') as f:
obj = pickle.load(f)
return obj
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='generate pretraining data for GINC')
parser.add_argument('--start_temp', type=float, default=10.0, help="temperature on distribution of start hidden states")
parser.add_argument('--transition_temp', type=float, default=0.1, help="temperature on transition probability matrices")
parser.add_argument('--skip_resample', action='store_true', help="whether to re-sample the dataset")
parser.add_argument('--n_symbols', type=int, default=10, help="number of symbols")
parser.add_argument('--n_values', type=int, default=5, help="number of entities (values)")
parser.add_argument('--n_slots', type=int, default=5, help="number of properties (slots)")
parser.add_argument('--value_identity_coeff', type=float, default=0.8, help="mixing coefficient for identity matrix on value transition matrix")
parser.add_argument('--random_data', action='store_true', help="whether to generate random data (not HMM)")
parser.add_argument('--no_prior_slots', action='store_true', help="only one slot transition matrix instead of a family")
parser.add_argument('--prior_values', action='store_true', help="use prior on values (many value transition matrices)")
parser.add_argument('--n_train_samples', type=int, default=1000, help="number of training documents")
parser.add_argument('--prompt_length', type=int, default=None, help="length of [x,y] sequence in prompt examples")
parser.add_argument('--n_hmms', type=int, default=100, help="number of total hmms in the mixture")
parser.add_argument('--skip_all_generation', action='store_true', help="whether to skip everything")
parser.add_argument('--root', type=str, help="root dir")
args = parser.parse_args()
if not args.skip_all_generation:
dataset_id = f'GINC_trans{args.transition_temp}_start{args.start_temp}_nsymbols{args.n_symbols}_nvalues{args.n_values}_nslots{args.n_slots}'
if args.value_identity_coeff != 0.8:
dataset_id += f'_vic{args.value_identity_coeff}'
if args.random_data:
dataset_id += '_randomdata'
if args.no_prior_slots:
dataset_id += '_noslotprior'
if args.prior_values:
dataset_id += '_valueprior'
if args.n_train_samples != 1000:
dataset_id += f'_nsamples{args.n_train_samples}'
dataset_id += f'_nhmms{args.n_hmms}'
data_dir = Path(args.root) / 'data'
save_dir = data_dir / dataset_id
save_dir.mkdir(exist_ok=True, parents=True)
seed = 1111
np.random.seed(seed)
random.seed(seed+2)
n_symbols = args.n_symbols
n_values = args.n_values
n_slots = args.n_slots
n_components = n_values * n_slots
n_perm_samples = n_components
n_hmms = args.n_hmms
n_id_hmms = n_hmms // 2
num_val_samples = 100
num_train_samples = args.n_train_samples
sample_length = 10240
val_sample_length = 1024
n_prompts = 2500
n_examples_per_prompts = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256]
vocab = list(letter_generator(n_symbols))
# replace delimiters with more interpretable tokens
vocab = ['/'] + vocab[:-1]
vocab = np.asarray(vocab)
vocab_to_int = {k: i for i, k in enumerate(vocab)}
# num_values number of num_slots sized lists of vocab words
all_values = np.random.randint(low=1, high=len(vocab), size=(n_values, n_slots))
# make sure every row has a delimiter
all_values[:, 0] = 0
hmm_list = []
hmm_params = []
if not args.skip_resample:
for i in range(n_hmms):
startprob, transmat, emissionprob, slot_transmat, value_transmat = generate_hmm_parameters(
n_values,
n_slots,
n_symbols,
all_values,
perm_samples=n_perm_samples,
transition_temp=args.transition_temp,
start_temp=args.start_temp,
value_transmat_id_coeff=args.value_identity_coeff,
value_transmat_seed=seed+3)
hmm = MultinomialHMM(n_components=n_components)
hmm.startprob_ = startprob
hmm.transmat_ = transmat
hmm.emissionprob_ = emissionprob
hmm_list.append(hmm)
hmm_params.append((slot_transmat, value_transmat))
id_hmms = hmm_list[:n_id_hmms]
ood_hmms = hmm_list[n_id_hmms:]
id_params = hmm_params[:n_id_hmms]
ood_params = hmm_params[n_id_hmms:]
print("Generating samples")
if not args.no_prior_slots:
id_samples = generate_samples(
num_train_samples, id_hmms,
sample_length=sample_length,
random_data=args.random_data)
id_samples_val = generate_samples(
num_val_samples, id_hmms,
sample_length=val_sample_length,
random_data=args.random_data)
else:
id_samples = generate_samples(
num_train_samples, [id_hmms[0]],
sample_length=sample_length,
random_data=args.random_data)
id_samples_val = generate_samples(
num_val_samples, [id_hmms[0]],
sample_length=val_sample_length,
random_data=args.random_data)
# save the hmm parameters for later verification
save_hmm_list(id_hmms, save_dir / 'id_hmms.pkl')
save_hmm_list(ood_hmms, save_dir / 'ood_hmms.pkl')
save_hmm_list(id_params, save_dir / 'id_params.pkl')
save_hmm_list(ood_params, save_dir / 'ood_params.pkl')
with open(save_dir / 'fixed_params.pkl', 'wb') as f:
pickle.dump(all_values, f)
save_as_json(id_samples, save_dir / 'train.json')
save_as_json(id_samples_val, save_dir / 'val.json')
samples_to_raw(id_samples, save_dir / 'train.txt')
samples_to_raw(id_samples_val, save_dir / 'val.txt')
else:
id_hmms = load(save_dir / 'id_hmms.pkl')
ood_hmms = load(save_dir / 'ood_hmms.pkl')
id_params = load(save_dir / 'id_params.pkl')
ood_params = load(save_dir / 'ood_params.pkl')
all_values = load(save_dir / 'fixed_params.pkl')
print("Generate Tokenizer")
tokenizer_path = save_dir / 'tokenizer.json'
save_tokenizer_json(vocab, tokenizer_path)
seed = 1114
np.random.seed(seed)
random.seed(seed+2)
if not args.prompt_length:
prompt_lengths = [3, 5, 8, 10]
else:
prompt_lengths = [args.prompt_length]
for prompt_length in prompt_lengths:
id_prompts = generate_prompts(
'ID_sample', n_prompts, n_examples_per_prompts, n_slots,
n_values, all_values, id_params, random_sample=True,
hmms=id_hmms, prompt_length=prompt_length, id_hmms=id_hmms)
save_as_json(id_prompts, save_dir / f'id_prompts_randomsample_{prompt_length}.json')
samples_to_raw(id_prompts, save_dir / f'id_prompts_randomsample_{prompt_length}.txt')
ood_prompts = generate_prompts(
'OOD_sample', n_prompts, n_examples_per_prompts, n_slots,
n_values, all_values, None, random_sample=True,
hmms=ood_hmms, prompt_length=prompt_length,
id_hmms=id_hmms)
save_as_json(ood_prompts, save_dir / f'ood_prompts_randomsample_{prompt_length}.json')
samples_to_raw(ood_prompts, save_dir / f'ood_prompts_randomsample_{prompt_length}.txt')