-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cu
807 lines (717 loc) · 34.1 KB
/
main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#include <iostream>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <fstream>
#include <math.h>
#include <thrust/device_vector.h>
#include <thrust/device_ptr.h>
#include "stdio.h"
#include "sampler.h"
#include "optix_function_table_definition.h"
#include "optix_stubs.h"
#include "optix.h"
#include "optix_types.h"
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image.h"
#include "stb_image_write.h"
#include "tiny-cuda-nn/common.h"
#include "tiny-cuda-nn/gpu_matrix.h"
#include "tiny-cuda-nn/config.h"
#include "tiny-cuda-nn/reduce_sum.h"
#include <json/json.h>
#include "tiny-cuda-nn/gpu_memory.h"
#include "rtx/include/params.h"
#include "rtx/include/rtxFunctions.h"
#include "data_loader.h"
#include "vol_render.h"
// Configure the model
nlohmann::json config = {
{"loss", {
{"otype", "L2"}
}},
// adam optimizer decays from 5e-4 to 5e-5
{"optimizer", {
{"otype", "Adam"},
{"learning_rate", 1e-3},
{"beta1", 0.9},
{"beta2", 0.999},
{"epsilon", 1e-8}
}},
{"encoding", {
{"otype", "Composite"},
{"nested", {
{
{"n_dims_to_encode", 3}, // Spatial dims
{"otype", "Frequency"},
{"n_frequencies", 10}
},
{
{"n_dims_to_encode", 2}, // Non-linear appearance dims.
{"otype", "Frequency"},
{"n_bins", 4}
}
}}
}},
{"network", {
{"otype", "FullyFusedMLP"},
{"activation", "ReLU"},
{"output_activation", "Sigmoid"},
{"n_neurons", 128},
{"n_hidden_layers", 8}
}}
};
template<typename T>
void printGPUMatrix(
const tcnn::GPUMatrix<T>& matrix,
int n_rows, int n_cols) {
// Get the dimensions of the matrix
uint32_t rows = matrix.rows();
uint32_t cols = matrix.cols();
// Allocate host memory to store the matrix data
T* hostData = new T[rows * cols];
// Copy the matrix data from GPU to host
cudaMemcpy(hostData, matrix.data(), sizeof(T) * rows * cols, cudaMemcpyDeviceToHost);
// Print the matrix values
for (uint32_t i = 0; i < n_rows; i++) {
for (uint32_t j = 0; j < n_cols; j++) {
std::cout << hostData[i * cols + j] << " ";
}
std::cout << std::endl;
}
// Free the host memory
delete[] hostData;
}
__global__ void printFloats(float* gpuPointer, int size)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < size)
{
printf("Value at index %d: %f\n", tid, gpuPointer[tid]);
}
}
__global__ void print_batch(float* batch, int batch_size, int image_size) {
//printf("HELLO???\n");
// int tid = blockIdx.x * blockDim.x + threadIdx.x;
// if (tid < batch_size) {
// printf("Batch %d\n", tid);
// for (int i = 0; i < image_size; ++i) {
// printf("%f ", batch[tid * image_size + i]);
// }
// printf("\n");
// }
}
__global__ void gatherIntersections(
float3* d_start_points,
float3* d_end_points,
int* d_num_hits,
float3* d_intersect_start,
float3* d_intersect_end,
int width, int height, int grid_size)
{
// Calculate the index of the pixel this thread should process.
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height)
{
// Calculate the base index for this pixel in the d_start_points and d_end_points arrays.
int base_index = (y * width + x) * grid_size;
// Find the number of grid cells hit by the ray from this pixel.
int num_hits = d_num_hits[y * width + x];
// For each hit, gather the entry and exit points.
for (int i = 0; i < num_hits; ++i)
{
float3 start_point = d_start_points[base_index + i];
float3 end_point = d_end_points[base_index + i];
// Store the intersection points.
d_intersect_start[2 * (base_index + i)] = start_point;
d_intersect_end[2 * (base_index + i)] = end_point;
}
}
}
// Creates a grid of Axis-aligned bounding boxes with specified resolution
// Bounding box coordinates are specified in normalized coordinates from -1 to 1
// TODO: make this a CUDA kernel
std::vector<OptixAabb> make_grid(int resolution) {
std::vector<OptixAabb> grid;
float box_length = 2.0f/ (float)resolution;
for(int x = 0; x < resolution; x++) {
for(int y = 0; y < resolution; y++) {
for(int z = 0; z < resolution; z++) {
OptixAabb aabb;
aabb.minX = -1.0f + (float)x * box_length;
aabb.maxX = -1.0f + x * box_length + box_length;
aabb.minY = -1.0f + y * box_length;
aabb.maxY = -1.0f + y * box_length + box_length;
aabb.minZ = -1.0f + z * box_length;
aabb.maxZ = -1.0f + z * box_length + box_length;
grid.push_back(aabb);
//std::printf("aabb (%.2f %.2f %.2f) (%.2f %.2f %.2f)\n",
// aabb.minX, aabb.minY, aabb.minZ, aabb.maxX, aabb.maxY, aabb.maxZ);
}
}
}
return grid;
}
void printGPUMem() {
size_t freeMem, totalMem;
cudaMemGetInfo(&freeMem, &totalMem);
size_t usedMem = totalMem - freeMem;
std::cout << "GPU Memory Usage: " << usedMem / 1024 / 1024 << " MB" << std::endl;
}
//auto model = tcnn::create_from_config(n_input_dims, n_output_dims, config);
#define EPOCHS 10
#define BATCH_SIZE tcnn::BATCH_SIZE_GRANULARITY*176
#define DATASET_SIZE 1000
RTXDataHolder *rtx_dataholder;
__global__ void print_intersections(float3* start, float3* end, int* num_hits, int num_prim) {
printf("Intersections\n");
for (int i = 0; i < 100; ++i) {
printf("ray (%i): %i hits\n", i, num_hits[i]); // origin = (%.2f, %.2f, %.2f)\n ",
for (int j = 0; j < num_hits[i]; ++j) {
float3 s = start[i*num_prim + j];
float3 e = end[i*num_prim + j];
printf(" (%.2f %.2f %.2f) (%.2f %.2f %.2f)\n", s.x, s.y, s.z, e.x, e.y, e.z);
}
}
}
__global__ void convertHalfToFloat(__half* input, float* output, int size) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < size) {
output[tid] = __half2float(input[tid]);
}
}
__global__ void floatToHalf(float* input, __half* output, int size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {
output[idx] = __float2half(input[idx]);
}
}
__global__ void print_int_arr(int* arr, int size) {
// Print the first 10 and last 10 elements in the buffer
printf("First 10 elements:\n");
for (int i = 0; i < 10; ++i) {
printf("%d ", arr[i]);
}
printf("\n");
printf("Last 10 elements:\n");
for (int i = size - 10; i < size; ++i) {
printf("%d ", arr[i]);
}
printf("\n");
}
__global__ void print_float_arr(float* arr, int size) {
printf("Printing float array\n");
for (int i = 0; i < 10; ++i) {
printf("%f ", arr[i]);
}
printf("\n");
}
__global__ void print_float2_arr(float2* arr, int width, int height) {
printf("Printing float2 array\n");
for (int i = 0; i < 10; ++i) {
for(int j = 0; j < 10; ++j) {
printf("%f %f ", arr[i * width + j].x, arr[i * width + j].y);
}
printf("\n");
}
printf("\n");
}
__global__ void print_float5_arr(float* arr, int size) {
printf("Printing first 32 points \n");
for(int i = 0; i < 64; ++i) {
printf("%f %f %f %f %f\n", arr[i*5], arr[i*5+1], arr[i*5+2], arr[i*5+3], arr[i*5+4]);
}
printf("\n");
printf("Printing last 32 points \n");
for(int i = size-64; i < size; ++i) {
printf("%f %f %f %f %f\n", arr[i*5], arr[i*5+1], arr[i*5+2], arr[i*5+3], arr[i*5+4]);
}
printf("\n");
}
__global__ void print_float3_arr(float3* arr, int size) {
printf("Printing float3 array\n");
printf("Printing first 32 points \n");
for(int i = 0; i < 32; ++i) {
printf("%f %f %f\n", arr[i].x, arr[i].y, arr[i].z);
}
printf("\n");
printf("Printing last 32 points \n");
for(int i = size-32; i < size; ++i) {
printf("%f %f %f\n", arr[i].x, arr[i].y, arr[i].z);
}
printf("\n");
}
__global__ void print_float4_arr(float* arr, int size) {
printf("Printing float4 array\n");
printf("Printing first 32 points \n");
for(int i = 0; i < 32; ++i) {
printf("%f %f %f %f\n", arr[i*4], arr[i*4+1], arr[i*4+2], arr[i*4+3]);
}
printf("\n");
printf("Printing last 32 points \n");
for(int i = size-32; i < size; ++i) {
printf("%f %f %f %f\n", arr[i*4], arr[i*4+1], arr[i*4+2], arr[i*4+3]);
}
printf("\n");
}
__global__ void print_half_buffer(__half* arr, int size) {
printf("Printing half buffer\n");
printf("Printing first 32 points \n");
for(int i = 0; i < 32; ++i) {
printf("%f ", __half2float(arr[i]));
}
printf("\n");
printf("Printing last 32 points \n");
for(int i = size-32; i < size; ++i) {
printf("%f ", __half2float(arr[i]));
}
printf("\n");
}
struct RayPayload {
int num_hits;
float3 origin;
float2 view_dir;
float* t_start;
float* t_end;
float3* start_points;
float3* end_points;
float3 pixel_color_gt;
};
int main() {
// load data from files
// TODO: take images and poses from json and load into DataLoader
int n_input_dims = 5;
int n_output_dims = 4;
int batch_size = BATCH_SIZE;
auto model = tcnn::create_from_config(n_input_dims, n_output_dims, config);
model.optimizer->allocate(model.network);
int n_params = model.network->n_params();
tcnn::GPUMemory<char> params_buffer;
params_buffer.resize(sizeof(tcnn::network_precision_t) * n_params * 2 + sizeof(float) * n_params);
params_buffer.memset(0);
float* params_full_precision = nullptr;
tcnn::network_precision_t* params_inference = nullptr;
tcnn::network_precision_t* params = nullptr;
tcnn::network_precision_t* params_gradients = nullptr;
params_full_precision = (float*)(params_buffer.data());
params = (tcnn::network_precision_t*)(params_buffer.data() + sizeof(float) * n_params);
params_gradients = (tcnn::network_precision_t*)(params_buffer.data() + sizeof(float) * n_params + sizeof(tcnn::network_precision_t) * n_params);
params_inference = params;
model.network->set_params(params, params_inference, params_gradients);
uint32_t seed = 1337;
std::seed_seq seq{seed};
std::vector<uint32_t> seeds(2);
seq.generate(std::begin(seeds), std::end(seeds));
auto rng = tcnn::pcg32{seeds.front()};
model.network->initialize_params(rng, params_full_precision);
tcnn::parallel_for_gpu(n_params, [params_fp=params_full_precision, params=params] __device__ (size_t i) {
params[i] = (tcnn::network_precision_t)params_fp[i];
});
CUDA_CHECK(cudaDeviceSynchronize());
int num_epochs = EPOCHS;
std::cout << "---------------------- Loading Data ----------------------\n";
// Loads the Training, validation, and test sets from the synthetic lego scene
std::vector<ImageDataset> datasets = load_data(SceneType::SYNTHETIC, SyntheticName::LEGO);
auto train_set = datasets[0];
unsigned int width = train_set.image_width;
unsigned int height = train_set.image_height;
unsigned int channels = train_set.image_channels;
float training_focal = train_set.focal;
float aspect_ratio = (float)width / (float)height;
float focal_length = 1.0f / tan(0.5f * training_focal);
size_t image_size = width * height * channels;
// get training dataset from datasets
std::vector<float*> training_images = datasets[0].images;
std::vector<float*> training_poses = datasets[0].poses;
std::cout << "---------------------- Data Loaded ----------------------\n\n\n";
// Initialize our Optix Program Groups and Pipeline
// We also build our initial dense acceleration structure of AABBs
std::cout << "---------------------- Initializing Optix ----------------------\n";
cudaStream_t inference_stream;
cudaStream_t training_stream;
CUDA_CHECK(cudaStreamCreate(&inference_stream));
CUDA_CHECK(cudaStreamCreate(&training_stream));
std::string ptx_filename = BUILD_DIR "bin/ptx/optixPrograms.ptx";
rtx_dataholder = new RTXDataHolder();
std::cout << "Initializing Context \n";
rtx_dataholder->initContext();
std::cout << "Reading PTX file and creating modules \n";
rtx_dataholder->createModule(ptx_filename);
std::cout << "Creating Optix Program Groups \n";
rtx_dataholder->createProgramGroups();
std::cout << "Linking Pipeline \n";
rtx_dataholder->linkPipeline(false);
std::cout << "Building Shader Binding Table (SBT) \n";
rtx_dataholder->buildSBT();
// Build our initial dense acceleration structure
int grid_resolution = 8;
std::cout << "Building Acceleration Structure \n";
std::vector<OptixAabb> grid = make_grid(grid_resolution);
int num_primitives = grid.size();
OptixAabb* d_aabb = rtx_dataholder->initAccelerationStructure(grid);
std::cout << "Done Building Acceleration Structure \n";
std::cout << "---------------------- Done Initializing Optix ----------------------\n\n\n";
std::cout << "Allocating Buffers on GPU" << std::endl;
float* d_image, *d_look_at;
CUDA_CHECK(cudaMalloc((void **)&d_image, image_size * sizeof(float)));
CUDA_CHECK(cudaMalloc((void **)&d_look_at, 16 * sizeof(float)));
std::cout << "Image Buffers Allocated on GPU" << std::endl;
// first generate rays for each pixel
// Allocate buffers to hold outputs from ray intersection tests
// start and end points are equal to # of AABBs in AS per ray [width * height * num_primitives]
float3 *d_start_points;
float3 *d_end_points;
float3 *d_ray_origins;
int *d_num_hits;
float2 *d_view_dir;
float* d_pixels;
float* d_temp_out;
float* d_t_start;
float* d_t_end;
tcnn::network_precision_t* d_pixels_half;
CUDA_CHECK(cudaMalloc((void**)&d_ray_origins, width * height * sizeof(float3)));
CUDA_CHECK(cudaMalloc((void**)&d_t_start, width * height * 3 * grid_resolution * sizeof(float)));
CUDA_CHECK(cudaMalloc((void**)&d_t_end, width * height * 3 * grid_resolution * sizeof(float)));
CUDA_CHECK(cudaMalloc((void **)&d_start_points, width * height * 3 * grid_resolution * sizeof(float3)));
CUDA_CHECK(cudaMalloc((void **)&d_end_points, width * height * 3 * grid_resolution * sizeof(float3)));
CUDA_CHECK(cudaMalloc((void **)&d_num_hits, width * height * sizeof(int)));
CUDA_CHECK(cudaMalloc((void **)&d_view_dir, width * height * sizeof(float2)));
std::cout << "Ray Intersection Buffers Allocated on GPU" << std::endl;
CUDA_CHECK(cudaMalloc((void**)&d_pixels, batch_size * sizeof(float) * 3));
CUDA_CHECK(cudaMalloc((void **)&d_temp_out, batch_size * n_output_dims * sizeof(float)));
CUDA_CHECK(cudaMalloc((void **)&d_pixels_half, batch_size * sizeof(tcnn::network_precision_t) * 3));
Params *d_param;
CUDA_CHECK(cudaMalloc((void **)&d_param, sizeof(Params)));
std::cout << "Params Buffer Allocated on GPU" << std::endl;
float3* h_origin;
float2* h_view_dir;
int* h_num_hits;
float* h_t_start;
float* h_t_end;
float3* h_start_points;
float3* h_end_points;
h_origin = (float3*)malloc(width * height * sizeof(float3));
h_view_dir = (float2*)malloc(width * height * sizeof(float2));
h_num_hits = (int*)malloc(width * height * sizeof(int));
h_t_start = (float*)malloc(width * height * 3 * grid_resolution * sizeof(float));
h_t_end = (float*)malloc(width * height * 3 * grid_resolution * sizeof(float));
h_start_points = (float3*)malloc(width * height * 3 * grid_resolution * sizeof(float3));
h_end_points = (float3*)malloc(width * height * 3 * grid_resolution * sizeof(float3));
std::vector<RayPayload> ray_payloads;
// Loop through training data and build dataset
// dataset consists of ray_payloads and ground truth pixel colors
// ray_payloads: (origin, dir, num_hits, t_start, t_end)
for(int i = 0; i < training_images.size(); i++) {
float* image = training_images[i];
float* look_at = training_poses[i];
// transfer image and look_at to GPU
CUDA_CHECK(cudaMemcpyAsync(d_image, image, image_size * sizeof(float), cudaMemcpyHostToDevice, inference_stream));
CUDA_CHECK(cudaMemcpyAsync(d_look_at, look_at, 16 * sizeof(float), cudaMemcpyHostToDevice, inference_stream));
// Memset ray intersection buffers
CUDA_CHECK(cudaMemsetAsync(d_start_points, -2, width * height * 3 * grid_resolution * sizeof(float3)));
CUDA_CHECK(cudaMemsetAsync(d_end_points, -2, width * height * 3 * grid_resolution * sizeof(float3)));
CUDA_CHECK(cudaMemsetAsync(d_t_start, -2, width * height * 3 * grid_resolution * sizeof(float)));
CUDA_CHECK(cudaMemsetAsync(d_t_end, -2, width * height * 3 * grid_resolution * sizeof(float)));
CUDA_CHECK(cudaMemsetAsync(d_view_dir, -2, width * height * sizeof(float2)));
CUDA_CHECK(cudaMemsetAsync(d_ray_origins, -2, width * height * sizeof(float3)));
CUDA_CHECK(cudaMemsetAsync(d_num_hits, 0, width * height * sizeof(int)));
Params params;
float d = 2.0f / grid_resolution;
params.delta = make_float3(d, d, d);
params.min_point = make_float3(-1, -1, -1);
params.max_point = make_float3(1, 1, 1);
params.intersection_arr_size = 3 * grid_resolution;
params.width = width;
params.height = height;
params.focal_length = focal_length;
params.aspect_ratio = aspect_ratio;
params.handle = rtx_dataholder->gas_handle;
params.aabb = d_aabb;
params.start_points = d_start_points;
params.end_points = d_end_points;
params.t_start = d_t_start;
params.t_end = d_t_end;
params.num_hits = d_num_hits;
params.num_primitives = num_primitives;
params.look_at = d_look_at;
params.viewing_direction = d_view_dir;
params.ray_origins = d_ray_origins;
CUDA_CHECK(cudaMemcpy(d_param, ¶ms, sizeof(params), cudaMemcpyHostToDevice));
const OptixShaderBindingTable &sbt_ray_march = rtx_dataholder->sbt_ray_march;
std::cout << "Launching Ray Tracer in Ray Marching Mode (" << width*height << " rays)\n";
OPTIX_CHECK(optixLaunch(rtx_dataholder->pipeline_ray_march, inference_stream,
reinterpret_cast<CUdeviceptr>(d_param),
sizeof(Params), &sbt_ray_march, width, height, 1));
CUDA_CHECK(cudaStreamSynchronize(inference_stream));
d_start_points = params.start_points;
d_end_points = params.end_points;
d_t_start = params.t_start;
d_t_end = params.t_end;
d_num_hits = params.num_hits;
d_ray_origins = params.ray_origins;
CUDA_CHECK(cudaMemcpyAsync(h_origin, d_ray_origins, width * height * sizeof(float3), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_view_dir, d_view_dir, width * height * sizeof(float2), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_num_hits, d_num_hits, width * height * sizeof(int), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_t_start, d_t_start, width * height * 3 * grid_resolution * sizeof(float), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_t_end, d_t_end, width * height * 3 * grid_resolution * sizeof(float), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_start_points, d_start_points, width * height * 3 * grid_resolution * sizeof(float3), cudaMemcpyDeviceToHost));
CUDA_CHECK(cudaMemcpyAsync(h_end_points, d_end_points, width * height * 3 * grid_resolution * sizeof(float3), cudaMemcpyDeviceToHost));
for(int i = 0; i < width * height; i++) {
RayPayload payload;
payload.origin = h_origin[i];
payload.view_dir = h_view_dir[i];
payload.num_hits = h_num_hits[i];
payload.t_start = (float*)malloc(h_num_hits[i] * sizeof(float));
payload.t_end = (float*)malloc(h_num_hits[i] * sizeof(float));
payload.start_points = (float3*)malloc(h_num_hits[i] * sizeof(float3));
payload.end_points = (float3*)malloc(h_num_hits[i] * sizeof(float3));
for(int j = 0; j < payload.num_hits; j++) {
payload.t_start[j] = h_t_start[i * 3 * grid_resolution + j];
payload.t_end[j] = h_t_end[i * 3 * grid_resolution + j];
payload.start_points[j] = h_start_points[i * 3 * grid_resolution + j];
payload.end_points[j] = h_end_points[i * 3 * grid_resolution + j];
}
payload.pixel_color_gt = make_float3(image[i * 3], image[i * 3 + 1], image[i * 3 + 2]);
ray_payloads.push_back(payload);
}
}
free(h_origin);
free(h_view_dir);
free(h_num_hits);
free(h_t_start);
free(h_t_end);
free(h_start_points);
free(h_end_points);
cudaFree(d_ray_origins);
cudaFree(d_t_start);
cudaFree(d_t_end);
cudaFree(d_start_points);
cudaFree(d_end_points);
cudaFree(d_num_hits);
cudaFree(d_view_dir);
std::cout << "---------------------- Done Generating Rays ----------------------\n\n\n";
// Print 10 random payloads from ray_payloads
// std::cout << "Random Ray Payloads:" << std::endl;
// for (int i = 0; i < 10; i++) {
// int random_index = rand() % ray_payloads.size();
// RayPayload random_payload = ray_payloads[random_index];
// std::cout << "Payload " << i+1 << ":" << std::endl;
// std::cout << "Origin: (" << random_payload.origin.x << ", " << random_payload.origin.y << ", " << random_payload.origin.z << ")" << std::endl;
// std::cout << "View Direction: (" << random_payload.view_dir.x << ", " << random_payload.view_dir.y << ")" << std::endl;
// std::cout << "Number of Hits: " << random_payload.num_hits << std::endl;
// std::cout << "T Start: ";
// for (int j = 0; j < random_payload.num_hits; j++) {
// std::cout << random_payload.t_start[j] << " ";
// }
// std::cout << std::endl;
// std::cout << "T End: ";
// for (int j = 0; j < random_payload.num_hits; j++) {
// std::cout << random_payload.t_end[j] << " ";
// }
// // print start and end points
// std::cout << std::endl;
// std::cout << "Start Points: ";
// for (int j = 0; j < random_payload.num_hits; j++) {
// std::cout << "(" << random_payload.start_points[j].x << ", " << random_payload.start_points[j].y << ", " << random_payload.start_points[j].z << ") ";
// }
// std::cout << std::endl;
// std::cout << "End Points: ";
// for (int j = 0; j < random_payload.num_hits; j++) {
// std::cout << "(" << random_payload.end_points[j].x << ", " << random_payload.end_points[j].y << ", " << random_payload.end_points[j].z << ") ";
// }
// std::cout << std::endl;
// // print ground truth pixel color
// std::cout << "Ground Truth Pixel Color: (" << random_payload.pixel_color_gt.x << ", " << random_payload.pixel_color_gt.y << ", " << random_payload.pixel_color_gt.z << ")" << std::endl;
// std::cout << std::endl << std::endl;
// }
int* h_batch_num_hits = (int*)malloc(batch_size * sizeof(int));
float3* h_gt_pixels = (float3*)malloc(batch_size * sizeof(float3));
h_view_dir = (float2*)malloc(batch_size * sizeof(float2));
float* d_gt_pixels;
int* d_batch_num_hits;
CUDA_CHECK(cudaMalloc((void **)&d_gt_pixels, batch_size * sizeof(float3)));
CUDA_CHECK(cudaMalloc((void **)&d_batch_num_hits, batch_size * sizeof(int)));
CUDA_CHECK(cudaMalloc((void **)&d_view_dir, batch_size * sizeof(float2)));
int* d_batch_hit_inds;
// We train our neural network for a specific amount of epochs
for (int j = 0; j < num_epochs; ++j) {
std::printf("Shuffling dataloader for epoch %d\n", j);
// shuffle ray payloads
std::random_shuffle(ray_payloads.begin(), ray_payloads.end());
std::printf("---------------------- Starting epoch %d --------------------------\n", j);
int num_iter = ray_payloads.size() / batch_size + 1;
// Loop through each set of images and poses in our training dataset
for(int i = 0; i < ray_payloads.size(); i+=batch_size) {
printf("Iteration %d/%d\n", i/batch_size, num_iter);
std::vector<RayPayload> batch_ray_payloads(ray_payloads.begin() + i, ray_payloads.begin() + i + batch_size);
for(int k = 0; k < batch_size; k++) {
h_batch_num_hits[k] = batch_ray_payloads[k].num_hits;
h_gt_pixels[k] = batch_ray_payloads[k].pixel_color_gt;
h_view_dir[k] = batch_ray_payloads[k].view_dir;
}
CUDA_CHECK(cudaMemcpyAsync(d_batch_num_hits, h_batch_num_hits, batch_size * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpyAsync(d_gt_pixels, h_gt_pixels, batch_size * sizeof(float3), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpyAsync(d_view_dir, h_view_dir, batch_size * sizeof(float2), cudaMemcpyHostToDevice));
// turn d_batch_num_hits into a thrust device pointer
thrust::device_ptr<int> dev_ptr_num_hits(d_batch_num_hits);
int num_points = thrust::reduce(dev_ptr_num_hits, dev_ptr_num_hits + batch_size);
// std::cout << "num_points: " << num_points << std::endl;
thrust::device_vector<int> d_hit_indsV(batch_size);
thrust::exclusive_scan(dev_ptr_num_hits, dev_ptr_num_hits + batch_size, d_hit_indsV.begin());
d_batch_num_hits = dev_ptr_num_hits.get();
d_batch_hit_inds = thrust::raw_pointer_cast(d_hit_indsV.data());
// print d_batch_num_hits and d_batch_hit_inds
// std::cout << "Printing d_batch_num_hits and d_batch_hit_inds \n";
// print_int_arr<<<1,1>>>(d_batch_num_hits, batch_size);
// CUDA_CHECK(cudaDeviceSynchronize());
// print_int_arr<<<1,1>>>(d_batch_hit_inds, batch_size);
// CUDA_CHECK(cudaDeviceSynchronize());
//free both
float3* h_start_points = (float3*)malloc(num_points * sizeof(float3));
float3* h_end_points = (float3*)malloc(num_points * sizeof(float3));
// float* h_t_end = (float*)malloc(num_points * sizeof(float));
// std::cout << "Filling in start_points, end_points, and t_end \n";
// fill in start_points, end_points, and t_end
int offset = 0;
for(int k = 0; k < batch_size; k++) {
for(int l = 0; l < batch_ray_payloads[k].num_hits; l++) {
h_start_points[offset + l] = batch_ray_payloads[k].start_points[l];
h_end_points[offset + l] = batch_ray_payloads[k].end_points[l];
// h_t_end[offset + l] = batch_ray_payloads[k].t_end[l];
}
offset += batch_ray_payloads[k].num_hits;
}
// std::cout << "Allocating GPU Buffers for Sampling \n";
float3* d_start_points;
float3* d_end_points;
// float* d_t_end;
//cudafree both
CUDA_CHECK(cudaMalloc((void **)&d_start_points, num_points * sizeof(float3)));
CUDA_CHECK(cudaMalloc((void **)&d_end_points, num_points * sizeof(float3)));
// CUDA_CHECK(cudaMalloc((void **)&d_t_end, num_points * sizeof(float)));
// std::cout << "Copying start_points, end_points, and t_end to GPU \n";
CUDA_CHECK(cudaMemcpyAsync(d_start_points, h_start_points, num_points * sizeof(float3), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMemcpyAsync(d_end_points, h_end_points, num_points * sizeof(float3), cudaMemcpyHostToDevice));
// CUDA_CHECK(cudaMemcpyAsync(d_t_end, h_t_end, num_points * sizeof(float), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaDeviceSynchronize());
int samples_per_intersect = 32;
// printf("num_hits_cu: %d\n", num_points);
int num_sampled_points = samples_per_intersect * num_points;
// printf("sampled_points: %d\n", num_sampled_points);
num_sampled_points = (num_sampled_points / 256) * 256 + 256;
// printf("upsampled_points: %d\n", num_sampled_points);
float* d_sampled_points;
float* d_sampled_points_radiance;
float* d_t_vals;
unsigned int size_input = num_sampled_points * sizeof(float) * 5;
unsigned int size_output = num_sampled_points * sizeof(float) * 4;
// printf("ALLOCATING %d bytes for samples (shouldn't be zero) \n", size_input);
// printf("ALLOCATING %d bytes for radiance (shouldn't be zero) \n", size_output);
// cudafree all of these
CUDA_CHECK(cudaMalloc((void**)&d_sampled_points, size_input));
CUDA_CHECK(cudaMalloc((void**)&d_sampled_points_radiance,
size_output));
CUDA_CHECK(cudaMalloc((void**)&d_t_vals, sizeof(float) * num_sampled_points));
// std::cout << "Printing start_points and end_points \n";
// print_float3_arr<<<1,1>>>(d_start_points, num_points);
// CUDA_CHECK(cudaDeviceSynchronize());
// print_float3_arr<<<1,1>>>(d_end_points, num_points);
// CUDA_CHECK(cudaDeviceSynchronize());
// std::cout << "Launching Sampling Kernel \n";
launchSampler(
d_start_points,
d_end_points,
d_view_dir,
d_t_vals,
d_sampled_points,
batch_size, grid_resolution,
d_batch_num_hits, d_batch_hit_inds,
SAMPLING_REGULAR, inference_stream);
uint32_t padded_output_width = model.network->padded_output_width();
tcnn::GPUMatrix<float> input_batch(n_input_dims, num_sampled_points);
tcnn::GPUMatrix<tcnn::network_precision_t> output_fwd(padded_output_width, num_sampled_points);
// printGPUMem();
// printf("Launching Forward Pass\n");
auto ctx = model.network->forward(inference_stream, input_batch, &output_fwd, true, true);
// printf("Done Forward Pass\n");
tcnn::GPUMatrix<tcnn::network_precision_t> output_slice = output_fwd.slice_rows(0, n_output_dims);
int num_el = output_slice.n_elements();
int blockSize1 = 1024;
int numBlocks1 = (num_el + blockSize1 - 1) / blockSize1;
convertHalfToFloat<<<numBlocks1,blockSize1>>>(output_slice.data(), d_sampled_points_radiance, num_el);
// print radiance buffer values
// printf("Printing radiance buffer values\n");
// print_float4_arr<<<1,1>>>(d_sampled_points_radiance, num_sampled_points);
// CUDA_CHECK(cudaDeviceSynchronize());
// Launch Volume Rendering kernel
// printf("Launching Volume Rendering Kernel\n");
launch_volrender_cuda(
d_sampled_points,
d_sampled_points_radiance,
d_batch_num_hits,
d_batch_hit_inds,
d_t_vals,
batch_size,
samples_per_intersect,
d_pixels
);
// printf("Done Volume Rendering Kernel\n");
// print pixel buffer values
// printf("Printing pixel buffer values\n");
// print_float_arr<<<1,1>>>(d_pixels, batch_size);
// CUDA_CHECK(cudaDeviceSynchronize());
int blockSize2 = 1024;
int numBlocks2 = (batch_size + blockSize2 - 1) / blockSize2;
floatToHalf<<<numBlocks2, blockSize2>>>(d_pixels, d_pixels_half, batch_size);
tcnn::GPUMatrix<tcnn::network_precision_t> predicted_image(d_pixels_half, batch_size, channels);
tcnn::GPUMatrix<float> target_image(d_gt_pixels, batch_size, channels);
tcnn::GPUMatrix<float> values(batch_size, channels);
tcnn::GPUMatrix<tcnn::network_precision_t> gradients(batch_size, channels);
model.loss->evaluate(1.0f, predicted_image, target_image, values, gradients);
float batch_loss = tcnn::reduce_sum(values.data(), values.n_elements(), inference_stream);
std::cout << "Batch Loss: " << batch_loss << std::endl;
tcnn::network_precision_t* d_loss_mlp;
CUDA_CHECK(cudaMalloc((void**)&d_loss_mlp, sizeof(tcnn::network_precision_t) * 16 * num_sampled_points));
launch_volrender_backward_cuda(
values.data(),
gradients.data(),
d_sampled_points_radiance,
d_t_vals,
d_batch_num_hits,
d_batch_hit_inds,
batch_size,
samples_per_intersect,
d_loss_mlp
);
print_half_buffer<<<1,1>>>(d_, n_params);
// printf("Done Volume Rendering Backward Kernel\n");
tcnn::GPUMatrix<tcnn::network_precision_t> loss_mlp(d_loss_mlp, 16, num_sampled_points);
model.network->backward(training_stream, *ctx, input_batch, output_fwd, loss_mlp);
// print params buffr
// printf("Printing params buffer values\n");
// print_float_arr<<<1,1>>>(params_full_precision, n_params);
print_half_buffer<<<1,1>>>(params_gradients, n_params);
model.optimizer->step(training_stream, 1.0, params_full_precision, params, params_gradients);
CUDA_CHECK(cudaDeviceSynchronize());
// print params buffr
// printf("Printing params buffer values\n");
// print_float_arr<<<1,1>>>(params_full_precision, n_params);
// printGPUMem();
// free buffers
cudaFree(d_sampled_points);
cudaFree(d_sampled_points_radiance);
cudaFree(d_t_vals);
cudaFree(d_start_points);
cudaFree(d_end_points);
cudaFree(d_loss_mlp);
free(h_start_points);
free(h_end_points);
// std::cout << "Done freeing buffers \n";
// printGPUMem();
}
}
return 0;
}