-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrdm_mask.py
124 lines (101 loc) · 4.86 KB
/
rdm_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import evaluation.utils as eval_utils
import pickle as pk
import os
import numpy as np
import pandas as pd
import evaluation.load_diveface as load_diveface
import evaluation.load_UTKFace as load_UTKFace
import evaluation.hyperparameter_finetuning as hyp_ft
import evaluation.simple_classifier as simple_classifier
import evaluation.verification_performance as vp
def execute_evaluation(db, classifiers, transform, seed, blocked_features=0):
# fine-tune classifiers every N_EPOCHS_FT epochs, evaluate the algorithm every N_EPOCHS_EVAL epochs
N_EPOCHS_FT = 25
N_EPOCHS_EVAL = 5
folder = str(seed) + ('_' + transform)
std_sc = pk.load(open(os.path.join(os.path.join('results', folder), 'std_sc.pkl'), 'rb'))
# load masks
masks = {'1': [], '2': [], '3': []}
num_epochs = 170
for i in range(1, 4):
for epoch in range(num_epochs):
filename = "{0:03}.npy".format(epoch)
mask = np.load(os.path.join('results', folder, 'method' + str(i), filename))
masks[str(i)].append(mask)
# load data for evaluation
if db == 'diveface':
# create
if not os.path.isfile('data/diveface_df.csv'):
diveface_df, length_embeddings = load_diveface.get_diveface_df(r'data\diveface_embeddings', seed,
save_files=True, limit_size=True)
else:
diveface_df = pd.read_csv('data/diveface_df.csv')
length_embeddings = diveface_df.shape[1] - 5
train_indexes, test_indexes = load_diveface.get_sb_train_test_indexes(diveface_df, seed, length_embeddings)
verification_indexes = load_diveface.get_verification_indexes(diveface_df, seed, length_embeddings)
# get data ready to perform evaluation of SB and verification
x_total = load_diveface.get_x_ready(diveface_df, length_embeddings)
labels = eval_utils.get_labels(db)
y = load_diveface.get_y_ready(diveface_df, labels)
elif db == 'utkface':
# create
if not os.path.isfile('data/utkface_df.csv'):
utkface_df, length_embeddings = load_UTKFace.get_utkface_df(r'data\utkface_embeddings', seed,
save_files=True, limit_size=True)
else:
utkface_df = pd.read_csv('data/utkface_df.csv')
length_embeddings = utkface_df.shape[1] - 2
train_indexes, test_indexes = load_UTKFace.get_sb_train_test_indexes(utkface_df, seed, length_embeddings)
# get data ready to perform evaluation of SB and verification
x_total = load_UTKFace.get_x_ready(utkface_df, length_embeddings)
labels = eval_utils.get_labels(db)
y = load_UTKFace.get_y_ready(utkface_df, labels)
x_total = std_sc.transform(x_total)
x_first = np.copy(x_total)
x_second = np.copy(x_total)
x_third = np.copy(x_total)
metrics = eval_utils.get_metric_dict(classifiers, db)
dict_ft_classifiers = {'0': {}, '1': {}, '2': {}}
for epoch in range(num_epochs):
if (epoch % N_EPOCHS_EVAL) == 0:
for ive_method, x in enumerate([x_first]):
x_train = x[train_indexes]
x_test = x[test_indexes]
y_train = y[train_indexes]
y_test = y[test_indexes]
scores = []
for i, label in enumerate(labels):
# every n epochs finetune the classifiers
if (epoch % N_EPOCHS_FT) == 0:
all_ft_classifiers = hyp_ft.get_finetuned_classifiers(classifiers, seed, x_train, y_train[:, i])
dict_ft_classifiers[str(ive_method)][label] = all_ft_classifiers
print('Classifiers fine-tuned! Epoch ' + str(epoch) + ', label ' + label)
# get the list of ft-classifiers specific for method and label
ft_classifiers = dict_ft_classifiers[str(ive_method)][label]
# compute the scores of every sb-classifier and store them
score = simple_classifier.train_evaluate_classifier(x_train, y_train[:, i], x_test, y_test[:, i],
classifiers, ft_classifiers, seed)
scores.append(score)
txt = 'Epoch ' + str(epoch) + ' (Method ' + str(ive_method) + ') --> '
for s, l in zip(scores, labels):
# only to have an idea of the trend
txt += l + ': ' + str(s[classifiers[0]]) + '---'
if db == 'diveface' and ('mlp' in classifiers):
eer_verification = vp.evaluate_verification(verification_indexes, x, seed)
else:
eer_verification = 'na'
txt += 'EER: ' + str(eer_verification)
print(txt + ('' if not ive_method == 2 else '\n'))
metrics = eval_utils.store_metrics(metrics, ive_method, scores, eer_verification, db)
x_first = x_first[:, masks['1'][epoch]]
x_second = x_second[:, masks['2'][epoch]]
x_third = x_third[:, masks['3'][epoch]]
if db == 'diveface':
np.save(os.path.join('results', folder, 'sex.npy'), np.array(metrics['first']['sex']['mlp']))
np.save(os.path.join('results', folder, 'ethnicity.npy'), np.array(metrics['first']['ethnicity']['mlp']))
np.save(os.path.join('results', folder, 'verification.npy'), np.array(metrics['first']['verification']))
else:
np.save(os.path.join('results', folder, 'age.npy'), np.array(metrics['first']['age']['mlp']))
execute_evaluation('diveface', ['mlp'], 'rdm', 9)
for seed in range(1, 10):
execute_evaluation('utkface', ['mlp'], 'rdm', seed)