-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathtckks-interactive-mp-bootstrapping.cpp
281 lines (229 loc) · 13.1 KB
/
tckks-interactive-mp-bootstrapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2014-2022, NJIT, Duality Technologies Inc. and other contributors
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
/*
Demo for Multi-Party Interactive Collective Bootstrapping with Threshold-CKKS (TCKKS) for
a single ciphertext.
It is a trivial example showing how to encrypt, bootstrap, and decrypt for 3 parties. No
computation is done here.
This protocol is secure against (n-1) collusion among the participating parties, where n is
the number of participating parties.
*/
#define PROFILE
#include "openfhe.h"
using namespace lbcrypto;
/*
* A utility class defining a party that is involved in the collective bootstrapping protocol
*/
struct Party {
public:
usint id; // unique party identifier starting from 0
std::vector<Ciphertext<DCRTPoly>> sharesPair; // (h_{0,i}, h_{1,i}) = (masked decryption
// share, re-encryption share)
// we use a vector inseat of std::pair for Python API compatibility
KeyPair<DCRTPoly> kpShard; // key-pair shard (pk, sk_i)
};
void TCKKSCollectiveBoot(enum ScalingTechnique rescaleTech);
int main(int argc, char* argv[]) {
std::cout << "Interactive Multi-Party Bootstrapping Ciphertext (TCKKS) started ...\n";
// Same test with different rescaling techniques in CKKS
TCKKSCollectiveBoot(ScalingTechnique::FIXEDMANUAL);
TCKKSCollectiveBoot(ScalingTechnique::FIXEDAUTO);
TCKKSCollectiveBoot(ScalingTechnique::FLEXIBLEAUTO);
TCKKSCollectiveBoot(ScalingTechnique::FLEXIBLEAUTOEXT);
std::cout << "Interactive Multi-Party Bootstrapping Ciphertext (TCKKS) terminated gracefully!\n";
return 0;
}
// Demonstrate interactive multi-party bootstrapping for 3 parties
// We follow Protocol 5 in https://eprint.iacr.org/2020/304, "Multiparty
// Homomorphic Encryption from Ring-Learning-With-Errors"
void TCKKSCollectiveBoot(enum ScalingTechnique scaleTech) {
if (scaleTech != ScalingTechnique::FIXEDMANUAL && scaleTech != ScalingTechnique::FIXEDAUTO &&
scaleTech != ScalingTechnique::FLEXIBLEAUTO && scaleTech != ScalingTechnique::FLEXIBLEAUTOEXT) {
std::string errMsg = "ERROR: Scaling technique is not supported!";
OPENFHE_THROW(errMsg);
}
CCParams<CryptoContextCKKSRNS> parameters;
// A. Specify main parameters
/* A1) Secret key distribution
* The secret key distribution for CKKS should either be SPARSE_TERNARY or UNIFORM_TERNARY.
* The SPARSE_TERNARY distribution was used in the original CKKS paper,
* but in this example, we use UNIFORM_TERNARY because this is included in the homomorphic
* encryption standard.
*/
SecretKeyDist secretKeyDist = UNIFORM_TERNARY;
parameters.SetSecretKeyDist(secretKeyDist);
/* A2) Desired security level based on FHE standards.
* In this example, we use the "NotSet" option, so the example can run more quickly with
* a smaller ring dimension. Note that this should be used only in
* non-production environments, or by experts who understand the security
* implications of their choices. In production-like environments, we recommend using
* HEStd_128_classic, HEStd_192_classic, or HEStd_256_classic for 128-bit, 192-bit,
* or 256-bit security, respectively. If you choose one of these as your security level,
* you do not need to set the ring dimension.
*/
parameters.SetSecurityLevel(HEStd_128_classic);
/* A3) Scaling parameters.
* By default, we set the modulus sizes and rescaling technique to the following values
* to obtain a good precision and performance tradeoff. We recommend keeping the parameters
* below unless you are an FHE expert.
*/
usint dcrtBits = 50;
usint firstMod = 60;
parameters.SetScalingModSize(dcrtBits);
parameters.SetScalingTechnique(scaleTech);
parameters.SetFirstModSize(firstMod);
/* A4) Multiplicative depth.
* The multiplicative depth detemins the computational capability of the instantiated scheme. It should be set
* according the following formula:
* multDepth >= desired_depth + interactive_bootstrapping_depth
* where,
* The desired_depth is the depth of the computation, as chosen by the user.
* The interactive_bootstrapping_depth is either 3 or 4, depending on the ciphertext compression mode: COMPACT vs SLACK (see below)
* Example 1, if you want to perform a computation of depth 24, you can set multDepth to 10, use 6 levels
* for computation and 4 for interactive bootstrapping. You will need to bootstrap 3 times.
*/
uint32_t multiplicativeDepth = 7;
parameters.SetMultiplicativeDepth(multiplicativeDepth);
parameters.SetKeySwitchTechnique(KeySwitchTechnique::HYBRID);
uint32_t batchSize = 4;
parameters.SetBatchSize(batchSize);
/* Protocol-specific parameters (SLACK or COMPACT)
* SLACK (default) uses larger masks, which makes it more secure theoretically. However, it is also slightly less efficient.
* COMPACT uses smaller masks, which makes it more efficient. However, it is relatively less secure theoretically.
* Both options can be used for practical security.
* The following table summarizes the differences between SLACK and COMPACT:
* Parameter SLACK COMPACT
* Mask size Larger Smaller
* Security More secure Less secure
* Efficiency Less efficient More efficient
* Recommended use For applications where security is paramount For applications where efficiency is paramount
*/
auto compressionLevel = COMPRESSION_LEVEL::SLACK;
parameters.SetInteractiveBootCompressionLevel(compressionLevel);
CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);
cryptoContext->Enable(PKE);
cryptoContext->Enable(KEYSWITCH);
cryptoContext->Enable(LEVELEDSHE);
cryptoContext->Enable(ADVANCEDSHE);
cryptoContext->Enable(MULTIPARTY);
usint ringDim = cryptoContext->GetRingDimension();
// This is the maximum number of slots that can be used for full packing.
usint maxNumSlots = ringDim / 2;
std::cout << "TCKKS scheme is using ring dimension " << ringDim << std::endl;
std::cout << "TCKKS scheme number of slots " << batchSize << std::endl;
std::cout << "TCKKS scheme max number of slots " << maxNumSlots << std::endl;
std::cout << "TCKKS example with Scaling Technique " << scaleTech << std::endl;
const usint numParties = 3; // n: number of parties involved in the interactive protocol
std::cout << "\n===========================IntMPBoot protocol parameters===========================\n";
std::cout << "number of parties: " << numParties << "\n";
std::cout << "===============================================================\n";
std::vector<Party> parties(numParties);
// Joint public key
KeyPair<DCRTPoly> kpMultiparty;
////////////////////////////////////////////////////////////
// Perform Key Generation Operation
////////////////////////////////////////////////////////////
std::cout << "Running key generation (used for source data)..." << std::endl;
// Initialization - Assuming numParties (n) of parties
// P0 is the leading party
for (usint i = 0; i < numParties; i++) {
parties[i].id = i;
std::cout << "Party " << parties[i].id << " started.\n";
if (0 == i)
parties[i].kpShard = cryptoContext->KeyGen();
else
parties[i].kpShard = cryptoContext->MultipartyKeyGen(parties[0].kpShard.publicKey);
std::cout << "Party " << i << " key generation completed.\n";
}
std::cout << "Joint public key for (s_0 + s_1 + ... + s_n) is generated..." << std::endl;
// Assert everything is good
for (usint i = 0; i < numParties; i++) {
if (!parties[i].kpShard.good()) {
std::cout << "Key generation failed for party " << i << "!" << std::endl;
exit(1);
}
}
// Generate the collective public key
std::vector<PrivateKey<DCRTPoly>> secretKeys;
for (usint i = 0; i < numParties; i++) {
secretKeys.push_back(parties[i].kpShard.secretKey);
}
kpMultiparty = cryptoContext->MultipartyKeyGen(secretKeys); // This is the same core key generation operation.
// Prepare input vector
std::vector<std::complex<double>> msg1({-0.9, -0.8, 0.2, 0.4});
Plaintext ptxt1 = cryptoContext->MakeCKKSPackedPlaintext(msg1);
// Encryption
Ciphertext<DCRTPoly> inCtxt = cryptoContext->Encrypt(kpMultiparty.publicKey, ptxt1);
DCRTPoly ptxtpoly = ptxt1->GetElement<DCRTPoly>();
std::cout << "Compressing ctxt to the smallest possible number of towers!\n";
inCtxt = cryptoContext->IntMPBootAdjustScale(inCtxt);
// INTERACTIVE BOOTSTRAPPING STARTS
std::cout << "\n============================ INTERACTIVE BOOTSTRAPPING STARTS ============================\n";
// Leading party (P0) generates a Common Random Poly (a) at max coefficient modulus (QNumPrime).
// a is sampled at random uniformly from R_{Q}
Ciphertext<DCRTPoly> a = cryptoContext->IntMPBootRandomElementGen(parties[0].kpShard.publicKey);
std::cout << "Common Random Poly (a) has been generated with coefficient modulus Q\n";
// Each party generates its own shares: maskedDecryptionShare and reEncryptionShare
std::vector<std::vector<Ciphertext<DCRTPoly>>> sharesPairVec;
// Make a copy of input ciphertext and remove the first element (c0), we only
// c1 for IntMPBootDecrypt
auto c1 = inCtxt->Clone();
c1->GetElements().erase(c1->GetElements().begin());
for (usint i = 0; i < numParties; i++) {
std::cout << "Party " << i << " started its part in the Collective Bootstrapping Protocol\n";
parties[i].sharesPair = cryptoContext->IntMPBootDecrypt(parties[i].kpShard.secretKey, c1, a);
sharesPairVec.push_back(parties[i].sharesPair);
}
// P0 finalizes the protocol by aggregating the shares and reEncrypting the results
auto aggregatedSharesPair = cryptoContext->IntMPBootAdd(sharesPairVec);
// Make sure you provide the non-striped ciphertext (inCtxt) in IntMPBootEncrypt
auto outCtxt = cryptoContext->IntMPBootEncrypt(parties[0].kpShard.publicKey, aggregatedSharesPair, a, inCtxt);
// INTERACTIVE BOOTSTRAPPING ENDS
std::cout << "\n============================ INTERACTIVE BOOTSTRAPPING ENDED ============================\n";
// Distributed decryption
std::cout << "\n============================ INTERACTIVE DECRYPTION STARTED ============================ \n";
std::vector<Ciphertext<DCRTPoly>> partialCiphertextVec;
std::cout << "Party 0 started its part in the collective decryption protocol\n";
partialCiphertextVec.push_back(cryptoContext->MultipartyDecryptLead({outCtxt}, parties[0].kpShard.secretKey)[0]);
for (usint i = 1; i < numParties; i++) {
std::cout << "Party " << i << " started its part in the collective decryption protocol\n";
partialCiphertextVec.push_back(
cryptoContext->MultipartyDecryptMain({outCtxt}, parties[i].kpShard.secretKey)[0]);
}
// Checking the results
std::cout << "MultipartyDecryptFusion ...\n";
Plaintext plaintextMultiparty;
cryptoContext->MultipartyDecryptFusion(partialCiphertextVec, &plaintextMultiparty);
plaintextMultiparty->SetLength(msg1.size());
std::cout << "Original plaintext \n\t" << ptxt1->GetCKKSPackedValue() << std::endl;
std::cout << "Result after bootstrapping \n\t" << plaintextMultiparty->GetCKKSPackedValue() << std::endl;
std::cout << "\n============================ INTERACTIVE DECRYPTION ENDED ============================\n";
}