-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimanneal_generate_pps.m
90 lines (76 loc) · 3.06 KB
/
simanneal_generate_pps.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function [p_pp,p_names,mdl_config,pp_yield,p_bnds] = simanneal_generate_pps(num_pps,vdp_model)
%% function simanneal_generate_pps
% Simulated annealing ("original method") specific version of generate
% pps
%
% Inputs:
% num_pps: scalar for the number of PPs to approximately generate
% vdp_model: simbiology object for the VDP model
%
% Outputs:
% p_pp: n x num_pps matrix of plausible patient parameters found
%
% n is the number of parameters in the VDP model.
%
% Note: this function is method specific.
%
do_score = 1; % Flag for turning on scoring of PPs.
score_fcn = @score_model; % Set the scoring function for the model, this could also be a passed parameter
%% 1. Get VDP model ready for simulation
% Accelerate the model - need to setup mex compliler to do this:
sbioaccelerate(vdp_model);
% Simulate to generate baseline VP, grab names:
[~, ~, state_names] = sbiosimulate(vdp_model);
%% 2. Load free parameters
% Do not include 'parameters' redefined by SimBiology in repeated
% assignments, or parameters which are known with high accuracy.
[p_names,p_values] = get_mdl_p_to_vary(vdp_model);
num_p = numel(p_values);
% Calculate/fetch the bounds for the parameters and states:
% All state values are steady states.
search_mag = 5;
[p_bnds,state_bnds] = ...
get_p_and_state_bnds(vdp_model,numel(state_names),p_values,search_mag);
%% 3. Get/set integration configuration
mdl_config = set_mdl_config(vdp_model);
%% 4. Prepare scoring function
f = @(p)run_variant_and_score(p,p_names,vdp_model,mdl_config,...
do_score,state_bnds,score_fcn);
% Options for optimization - note, problem specific! Could probably use
% local optimization to accomplish this same thing:
opt_sa = saoptimset('ObjectiveLimit',0.005,'TolFun',1e-5,'Display','off',...
'ReannealInterval',500,'InitialTemperature',0.5,'MaxIter',400,'TemperatureFcn',...
@temperatureboltz,'AnnealingFcn', @annealingboltz,'AcceptanceFcn',@acceptancesa);
% Predefine number of PPs you want and allocate storage arrays:
p_pp = zeros(numel(p_names),num_pps);
score_v = zeros(num_pps,1);
%% 5. Vary parameters to form initial guess and perform optimization:
logp_lower = log10(p_bnds(:,1));
logp_upper = log10(p_bnds(:,2));
logp0 = log10(p_values);
k = 1; % counter for plausible patients
iter = 1; % iteration counter
max_iter = num_pps * 100; % maximum number of iterations (hard-coded for now)
%fprintf('PPs found\tAttempts\n');
while k <= num_pps && iter <= max_iter
%logp = min(logp_upper,max(logp_lower,logp0 + 0.1*randn(num_p,1).*abs(logp0)));
p = p_bnds(:,1) + (p_bnds(:,2) - p_bnds(:,1)).*rand(num_p,1);
logp = log10(p);
[logp_sa,~] = ...
simulannealbnd(f,logp,logp_lower,logp_upper,opt_sa);
score_pp = f(logp_sa);
if score_pp < 2
p_pp(:,k) = 10.^logp_sa;
score_v(k) = score_pp;
% if ~mod(k,250)
% fprintf('%9d\t%8d\n',k,iter);
% end
k = k + 1;
end
iter = iter + 1;
end
if iter >= max_iter
error('pp-selection failed due to too many iterations');
end
pp_yield = (k-1)./(iter-1);
end % function simanneal_generate_pps