-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga_score_model.m
35 lines (30 loc) · 1.14 KB
/
ga_score_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function score = ga_score_model(mdl_ss,state_range,mu,sigma)
% function ga_score_model
% Builds on generic score_model function by adding in some knowledge
% of the multivariate PDF
%
% Inputs:
% mdl_ss - steady state states from the model of interest.
% state_range - steady state obserable ranges (col. 1 - lower bnds,
% col. 2 - upper bnds).
%
% Outputs:
% score - scalar, 0 = all model values within observable ranges
% (plausible patient). > 0 otherwise.
%
% Note: this is a slightly modified version of the original
% "ScoreModelSSGA" function.
%
%% Filter for the date we are interested in for fitting:
state_midpt = (state_range(:,1)'+state_range(:,2)')/2;
%% Calculate score:
score = (state_midpt - mdl_ss).^2 - (state_midpt - state_range(:,1)').^2;
score = score./state_midpt.^2;
score = sum(score(score>=0));
% Create the NHANES observables:
mdl_ss = mdl_ss*(38.66/2.79); %convert units to match NHANES
lnhDL = log((mdl_ss(5) + mdl_ss(6)));
lntc = log((mdl_ss(7) + mdl_ss(5) + mdl_ss(6)));
lnldl = log((mdl_ss(9)));
score = score - mvnpdf([lnhDL lnldl lntc],mu,sigma);
end % function score_model