-
Notifications
You must be signed in to change notification settings - Fork 755
/
Copy pathsdmgr_novisual_60e_wildreceipt-openset.py
71 lines (64 loc) · 2 KB
/
sdmgr_novisual_60e_wildreceipt-openset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
_base_ = [
'../_base_/default_runtime.py',
'../_base_/datasets/wildreceipt-openset.py',
'../_base_/schedules/schedule_adam_60e.py',
'_base_sdmgr_novisual.py',
]
node_num_classes = 4 # 4 classes: bg, key, value and other
edge_num_classes = 2 # edge connectivity
key_node_idx = 1
value_node_idx = 2
model = dict(
type='SDMGR',
kie_head=dict(
num_classes=node_num_classes,
postprocessor=dict(
link_type='one-to-many',
key_node_idx=key_node_idx,
value_node_idx=value_node_idx)),
)
test_pipeline = [
dict(
type='LoadKIEAnnotations',
key_node_idx=key_node_idx,
value_node_idx=value_node_idx), # Keep key->value edges for evaluation
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs'),
]
wildreceipt_openset_train = _base_.wildreceipt_openset_train
wildreceipt_openset_train.pipeline = _base_.train_pipeline
wildreceipt_openset_test = _base_.wildreceipt_openset_test
wildreceipt_openset_test.pipeline = test_pipeline
train_dataloader = dict(
batch_size=4,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=wildreceipt_openset_train)
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=wildreceipt_openset_test)
test_dataloader = val_dataloader
val_evaluator = [
dict(
type='F1Metric',
prefix='node',
key='labels',
mode=['micro', 'macro'],
num_classes=node_num_classes,
cared_classes=[key_node_idx, value_node_idx]),
dict(
type='F1Metric',
prefix='edge',
mode='micro',
key='edge_labels',
cared_classes=[1], # Collapse to binary F1 score
num_classes=edge_num_classes)
]
test_evaluator = val_evaluator
visualizer = dict(
type='KIELocalVisualizer', name='visualizer', is_openset=True)
auto_scale_lr = dict(base_batch_size=4)