-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathpredict.py
170 lines (144 loc) · 5.9 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os.path as osp
import numpy as np
import torch
from cog import BasePredictor, Input, Path
from omegaconf import OmegaConf
from PIL import Image
from animatediff.pipelines import I2VPipeline
from animatediff.utils.util import save_videos_grid
N_PROMPT = (
"wrong white balance, dark, sketches,worst quality,low quality, "
"deformed, distorted, disfigured, bad eyes, wrong lips, "
"weird mouth, bad teeth, mutated hands and fingers, bad anatomy,"
"wrong anatomy, amputation, extra limb, missing limb, "
"floating,limbs, disconnected limbs, mutation, ugly, disgusting, "
"bad_pictures, negative_hand-neg"
)
BASE_CONFIG = "example/config/base.yaml"
STYLE_CONFIG_LIST = {
"realistic": "example/replicate/1-realistic.yaml",
"3d_cartoon": "example/replicate/3-3d.yaml",
}
PIA_PATH = "models/PIA"
VAE_PATH = "models/VAE"
DreamBooth_LoRA_PATH = "models/DreamBooth_LoRA"
STABLE_DIFFUSION_PATH = "models/StableDiffusion"
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.ip_adapter_dir = "models/IP_Adapter/h94/IP-Adapter/models" # cached h94/IP-Adapter
self.inference_config = OmegaConf.load("example/config/base.yaml")
self.stable_diffusion_dir = self.inference_config.pretrained_model_path
self.pia_path = self.inference_config.generate.model_path
self.style_configs = {k: OmegaConf.load(v) for k, v in STYLE_CONFIG_LIST.items()}
self.pipeline_dict = self.load_model_list()
def load_model_list(self):
pipeline_dict = {}
for style, cfg in self.style_configs.items():
print(f"Loading {style}")
dreambooth_path = cfg.get("dreambooth", "none")
if dreambooth_path and dreambooth_path.upper() != "NONE":
dreambooth_path = osp.join(DreamBooth_LoRA_PATH, dreambooth_path)
lora_path = cfg.get("lora", None)
if lora_path is not None:
lora_path = osp.join(DreamBooth_LoRA_PATH, lora_path)
lora_alpha = cfg.get("lora_alpha", 0.0)
vae_path = cfg.get("vae", None)
if vae_path is not None:
vae_path = osp.join(VAE_PATH, vae_path)
pipeline_dict[style] = I2VPipeline.build_pipeline(
self.inference_config,
STABLE_DIFFUSION_PATH,
unet_path=osp.join(PIA_PATH, "pia.ckpt"),
dreambooth_path=dreambooth_path,
lora_path=lora_path,
lora_alpha=lora_alpha,
vae_path=vae_path,
ip_adapter_path=self.ip_adapter_dir,
ip_adapter_scale=0.1,
)
return pipeline_dict
def predict(
self,
prompt: str = Input(description="Input prompt."),
image: Path = Input(description="Input image"),
negative_prompt: str = Input(description="Things do not show in the output.", default=N_PROMPT),
style: str = Input(
description="Choose a style",
choices=["3d_cartoon", "realistic"],
default="3d_cartoon",
),
max_size: int = Input(
description="Max size (The long edge of the input image will be resized to this value, "
"larger value means slower inference speed)",
default=512,
choices=[512, 576, 640, 704, 768, 832, 896, 960, 1024],
),
motion_scale: int = Input(
description="Larger value means larger motion but less identity consistency.",
ge=1,
le=3,
default=1,
),
sampling_steps: int = Input(description="Number of denoising steps", ge=10, le=100, default=25),
animation_length: int = Input(description="Length of the output", ge=8, le=24, default=16),
guidance_scale: float = Input(
description="Scale for classifier-free guidance",
ge=1.0,
le=20.0,
default=7.5,
),
ip_adapter_scale: float = Input(
description="Scale for classifier-free guidance",
ge=0.0,
le=1.0,
default=0.0,
),
seed: int = Input(description="Random seed. Leave blank to randomize the seed", default=None),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
torch.seed()
seed = torch.initial_seed()
else:
torch.manual_seed(seed)
print(f"Using seed: {seed}")
pipeline = self.pipeline_dict[style]
init_img, h, w = preprocess_img(str(image), max_size)
sample = pipeline(
image=init_img,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=sampling_steps,
guidance_scale=guidance_scale,
width=w,
height=h,
video_length=animation_length,
mask_sim_template_idx=motion_scale,
ip_adapter_scale=ip_adapter_scale,
).videos
out_path = "/tmp/out.mp4"
save_videos_grid(sample, out_path)
return Path(out_path)
def preprocess_img(img_np, max_size: int = 512):
ori_image = Image.open(img_np).convert("RGB")
width, height = ori_image.size
long_edge = max(width, height)
if long_edge > max_size:
scale_factor = max_size / long_edge
else:
scale_factor = 1
width = int(width * scale_factor)
height = int(height * scale_factor)
ori_image = ori_image.resize((width, height))
if (width % 8 != 0) or (height % 8 != 0):
in_width = (width // 8) * 8
in_height = (height // 8) * 8
else:
in_width = width
in_height = height
in_image = ori_image.resize((in_width, in_height))
in_image_np = np.array(in_image)
return in_image_np, in_height, in_width