-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathinference.py
131 lines (112 loc) · 4.91 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
import argparse
import os
import numpy as np
import torch
from omegaconf import OmegaConf
from animatediff.pipelines import I2VPipeline
from animatediff.utils.util import preprocess_img, save_videos_grid
def seed_everything(seed):
import random
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed % (2**32))
random.seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
functional_group = parser.add_mutually_exclusive_group()
parser.add_argument("--config", type=str, default="configs/test.yaml")
parser.add_argument(
"--magnitude", type=int, default=None, choices=[0, 1, 2, -1, -2, -3]
) # negative is for style transfer
functional_group.add_argument("--loop", action="store_true")
functional_group.add_argument("--style_transfer", action="store_true")
args = parser.parse_args()
config = OmegaConf.load(args.config)
base_config = OmegaConf.load(config.base)
config = OmegaConf.merge(base_config, config)
if args.magnitude is not None:
config.validation_data.mask_sim_range = [args.magnitude]
if args.style_transfer:
config.validation_data.mask_sim_range = [
-1 * magnitude - 1 if magnitude >= 0 else magnitude for magnitude in config.validation_data.mask_sim_range
]
elif args.loop:
config.validation_data.mask_sim_range = [
magnitude + 3 if magnitude >= 0 else magnitude for magnitude in config.validation_data.mask_sim_range
]
os.makedirs(config.validation_data.save_path, exist_ok=True)
folder_num = len(os.listdir(config.validation_data.save_path))
target_dir = f"{config.validation_data.save_path}/{folder_num}/"
# prepare paths and pipeline
base_model_path = config.pretrained_model_path
unet_path = config.generate.model_path
dreambooth_path = config.generate.db_path
if config.generate.use_lora:
lora_path = config.generate.get("lora_path", None)
lora_alpha = config.generate.get("lora_alpha", 0)
else:
lora_path = None
lora_alpha = 0
validation_pipeline = I2VPipeline.build_pipeline(
config,
base_model_path,
unet_path,
dreambooth_path,
lora_path,
lora_alpha,
)
generator = torch.Generator(device="cuda")
generator.manual_seed(config.generate.global_seed)
global_inf_num = 0
# if not os.path.exists(target_dir):
os.makedirs(target_dir, exist_ok=True)
# print(" >>> Begin test >>>")
print(f"using unet : {unet_path}")
print(f"using DreamBooth: {dreambooth_path}")
print(f"using Lora : {lora_path}")
sim_ranges = config.validation_data.mask_sim_range
if isinstance(sim_ranges, int):
sim_ranges = [sim_ranges]
OmegaConf.save(config, os.path.join(target_dir, "config.yaml"))
generator.manual_seed(config.generate.global_seed)
seed_everything(config.generate.global_seed)
# load image
img_root = config.validation_data.validation_input_path
input_name = config.validation_data.input_name
if os.path.exists(os.path.join(img_root, f"{input_name}.jpg")):
image_name = os.path.join(img_root, f"{input_name}.jpg")
elif os.path.exists(os.path.join(img_root, f"{input_name}.png")):
image_name = os.path.join(img_root, f"{input_name}.png")
else:
raise ValueError("image_name should be .jpg or .png")
# image = np.array(Image.open(image_name))
image, gen_height, gen_width = preprocess_img(image_name)
config.generate.sample_height = gen_height
config.generate.sample_width = gen_width
for sim_range in sim_ranges:
print(f"using sim_range : {sim_range}")
config.validation_data.mask_sim_range = sim_range
prompt_num = 0
for prompt, n_prompt in zip(config.prompts, config.n_prompt):
print(f"using n_prompt : {n_prompt}")
prompt_num += 1
for single_prompt in prompt:
print(f" >>> Begin test {global_inf_num} >>>")
global_inf_num += 1
image_path = ""
sample = validation_pipeline(
image=image,
prompt=single_prompt,
generator=generator,
# global_inf_num = global_inf_num,
video_length=config.generate.video_length,
height=config.generate.sample_height,
width=config.generate.sample_width,
negative_prompt=n_prompt,
mask_sim_template_idx=config.validation_data.mask_sim_range,
**config.validation_data,
).videos
save_videos_grid(sample, target_dir + f"{global_inf_num}_sim_{sim_range}.gif")
print(f" <<< test {global_inf_num} Done <<<")
print(" <<< Test Done <<<")