-
Notifications
You must be signed in to change notification settings - Fork 473
/
Copy patheval_academic_leaderboard_202412.py
145 lines (127 loc) · 4.79 KB
/
eval_academic_leaderboard_202412.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from mmengine.config import read_base
import os.path as osp
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import LocalRunner, VOLCRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
#######################################################################
# PART 0 Essential Configs #
#######################################################################
with read_base():
# Datasets Part
# Knowledge
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import (
mmlu_pro_datasets,
)
# General Reasoning
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import (
gpqa_datasets,
)
from opencompass.configs.datasets.bbh.bbh_0shot_nocot_gen_925fc4 import (
bbh_datasets,
)
from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_dcae0e import (
humaneval_datasets,
)
# Instruction Following
from opencompass.configs.datasets.IFEval.IFEval_gen_353ae7 import (
ifeval_datasets,
)
from opencompass.configs.datasets.livecodebench.livecodebench_gen_a4f90b import (
LCBCodeGeneration_dataset,
)
# Math
from opencompass.configs.datasets.aime2024.aime2024_gen_6e39a4 import (
aime2024_datasets,
)
from opencompass.configs.datasets.math.math_prm800k_500_0shot_cot_gen import (
math_datasets,
)
# Summary Groups
from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups
from opencompass.configs.summarizers.groups.mmlu_pro import (
mmlu_pro_summary_groups,
)
# Model List
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import (
models as hf_internlm2_5_7b_chat_model,
)
#######################################################################
# PART 1 Datasets List #
#######################################################################
# datasets list for evaluation
# Only take LCB generation for evaluation
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')), []
) + [LCBCodeGeneration_dataset]
#######################################################################
# PART 2 Datset Summarizer #
#######################################################################
core_summary_groups = [
{
'name': 'core_average',
'subsets': [
['IFEval', 'Prompt-level-strict-accuracy'],
['bbh', 'naive_average'],
['math_prm800k_500', 'accuracy'],
['aime2024', 'accuracy'],
['GPQA_diamond', 'accuracy'],
['mmlu_pro', 'naive_average'],
['openai_humaneval', 'humaneval_pass@1'],
['lcb_code_generation', 'pass@1'],
],
},
]
summarizer = dict(
dataset_abbrs=[
['core_average', 'naive_average'],
'',
'Instruction Following',
['IFEval', 'Prompt-level-strict-accuracy'],
'',
'General Reasoning',
['bbh', 'naive_average'],
['GPQA_diamond', 'accuracy'],
'',
'Math Calculation',
['math_prm800k_500', 'accuracy'],
['aime2024', 'accuracy'],
'',
'Knowledge',
['mmlu_pro', 'naive_average'],
'',
'Code',
['openai_humaneval', 'humaneval_pass@1'],
['lcb_code_generation', 'pass@1'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
#######################################################################
# PART 4 Inference/Evaluation Configuaration #
#######################################################################
# Local Runner
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
max_num_workers=16,
retry=0, # Modify if needed
task=dict(type=OpenICLInferTask),
),
)
# eval with local runner
eval = dict(
partitioner=dict(type=NaivePartitioner, n=10),
runner=dict(
type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLEvalTask)
),
)
#######################################################################
# PART 5 Utils Configuaration #
#######################################################################
work_dir = './outputs/oc_academic_202412'