forked from zama-ai/concrete-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconftest.py
501 lines (389 loc) · 18.3 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""PyTest configuration file."""
import json
import random
import re
from pathlib import Path
from typing import Any, Callable, Optional, Union
import numpy
import pytest
import torch
from concrete.fhe import Graph as CPGraph
from concrete.fhe.compilation import Circuit, Configuration
from concrete.fhe.mlir.utils import MAXIMUM_TLU_BIT_WIDTH
from sklearn.datasets import make_classification, make_regression
from concrete.ml.common.utils import (
SUPPORTED_FLOAT_TYPES,
all_values_are_floats,
is_brevitas_model,
is_classifier_or_partial_classifier,
is_model_class_in_a_list,
is_regressor_or_partial_regressor,
to_tuple,
)
from concrete.ml.quantization.quantized_module import QuantizedModule
from concrete.ml.sklearn import (
GammaRegressor,
PoissonRegressor,
TweedieRegressor,
get_sklearn_neural_net_models,
)
from concrete.ml.sklearn.base import (
BaseTreeEstimatorMixin,
QuantizedTorchEstimatorMixin,
SklearnLinearModelMixin,
)
def pytest_addoption(parser):
"""Options for pytest."""
parser.addoption(
"--global-coverage-infos-json",
action="store",
default=None,
type=str,
help="To dump pytest-cov term report to a text file.",
)
parser.addoption(
"--forcing_random_seed",
action="store",
default=None,
type=int,
help="To force the seed of each and every unit test, to be able to "
"reproduce a particular issue.",
)
parser.addoption(
"--weekly",
action="store_true",
help="To do longer tests.",
)
# This is only for doctests where we currently cannot make use of fixtures
original_compilation_config_init = Configuration.__init__
def monkeypatched_compilation_configuration_init_for_codeblocks(
self: Configuration, *args, **kwargs
):
"""Monkeypatched compilation configuration init for codeblocks tests."""
original_compilation_config_init(self, *args, **kwargs)
self.dump_artifacts_on_unexpected_failures = False
self.enable_unsafe_features = True # This is for our tests only, never use that in prod
self.treat_warnings_as_errors = True
self.use_insecure_key_cache = True # This is for our tests only, never use that in prod
self.insecure_key_cache_location = "ConcreteNumpyKeyCache"
def pytest_sessionstart(session: pytest.Session):
"""Handle codeblocks Configuration if needed."""
if session.config.getoption("--codeblocks", default=False):
# setattr to avoid mypy complaining
# Disable the flake8 bug bear warning for the mypy fix
setattr( # noqa: B010
Configuration,
"__init__",
monkeypatched_compilation_configuration_init_for_codeblocks,
)
def pytest_sessionfinish(session: pytest.Session, exitstatus): # pylint: disable=unused-argument
"""Pytest callback when testing ends."""
# Hacked together from the source code, they don't have an option to export to file and it is
# too much work to get a PR in for such a little thing
# https://github.com/pytest-dev/pytest-cov/blob/
# ec344d8adf2d78238d8f07cb20ed2463d7536970/src/pytest_cov/plugin.py#L329
if session.config.pluginmanager.hasplugin("_cov"):
global_coverage_file = session.config.getoption(
"--global-coverage-infos-json", default=None
)
if global_coverage_file is not None:
cov_plugin = session.config.pluginmanager.getplugin("_cov")
coverage_txt = cov_plugin.cov_report.getvalue()
coverage_status = 0
if (
cov_plugin.options.cov_fail_under is not None
and cov_plugin.options.cov_fail_under > 0
):
failed = cov_plugin.cov_total < cov_plugin.options.cov_fail_under
# If failed is False coverage_status is 0, if True it is 1
coverage_status = int(failed)
global_coverage_file_path = Path(global_coverage_file).resolve()
with open(global_coverage_file_path, "w", encoding="utf-8") as f:
json.dump({"exit_code": coverage_status, "content": coverage_txt}, f)
@pytest.fixture
def default_configuration():
"""Return the default test compilation configuration."""
return Configuration(
dump_artifacts_on_unexpected_failures=False,
enable_unsafe_features=True, # This is for our tests only, never use that in prod
use_insecure_key_cache=True, # This is for our tests only, never use that in prod
insecure_key_cache_location="ConcreteNumpyKeyCache",
jit=True,
)
@pytest.fixture
def default_configuration_no_jit():
"""Return the default test compilation configuration."""
return Configuration(
dump_artifacts_on_unexpected_failures=False,
enable_unsafe_features=True, # This is for our tests only, never use that in prod
use_insecure_key_cache=True, # This is for our tests only, never use that in prod
insecure_key_cache_location="ConcreteNumpyKeyCache",
jit=False,
)
REMOVE_COLOR_CODES_RE = re.compile(r"\x1b[^m]*m")
@pytest.fixture
def remove_color_codes():
"""Return the re object to remove color codes."""
return lambda x: REMOVE_COLOR_CODES_RE.sub("", x)
def function_to_seed_torch(seed):
"""Seed torch, for determinism."""
# Seed torch with something which is seed by pytest-randomly
torch.manual_seed(seed)
torch.use_deterministic_algorithms(True)
@pytest.fixture(autouse=True)
def autoseeding_of_everything(record_property, request):
"""Seed everything we can, for determinism."""
main_seed = request.config.getoption("--forcing_random_seed", default=None)
if main_seed is None:
main_seed = random.randint(0, 2**64 - 1)
seed = main_seed
record_property("main seed", main_seed)
# Python
random.seed(seed)
print("\nForcing seed to random.seed to ", seed)
print(
f"\nRelaunch the tests with --forcing_random_seed {seed} "
+ "--randomly-dont-reset-seed to reproduce. Remark that adding --randomly-seed=... "
+ "is needed when the testcase uses randoms in pytest parameters"
)
print(
"Remark that potentially, any option used in the pytest call may have an impact so in "
+ "case of problem to reproduce, you may want to have a look to `make pytest` options"
)
# Numpy
seed += 1
numpy.random.seed(seed % 2**32)
# Seed torch
seed += 1
function_to_seed_torch(seed)
return {"main seed": main_seed}
@pytest.fixture
def is_weekly_option(request):
"""Say if we are in --weekly configuration."""
is_weekly = request.config.getoption("--weekly")
return is_weekly
# Method is not ideal as some MLIR can contain TLUs but not the associated graph
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2381
def check_graph_input_has_no_tlu_impl(graph: CPGraph):
"""Check that the graph's input node does not contain a TLU."""
succ = list(graph.graph.successors(graph.input_nodes[0]))
if any(s.converted_to_table_lookup for s in succ):
raise AssertionError(f"Graph contains a TLU on an input node: {str(graph.format())}")
# Method is not ideal as some MLIR can contain TLUs but not the associated graph
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2381
def check_graph_output_has_no_tlu_impl(graph: CPGraph):
"""Check that the graph's output node does not contain a TLU."""
if graph.output_nodes[0].converted_to_table_lookup:
raise AssertionError(f"Graph output is produced by a TLU: {str(graph.format())}")
# Method is not ideal as some MLIR can contain TLUs but not the associated graph
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2381
def check_graph_has_no_input_output_tlu_impl(graph: CPGraph):
"""Check that the graph's input and output nodes do not contain a TLU."""
check_graph_input_has_no_tlu_impl(graph)
check_graph_output_has_no_tlu_impl(graph)
# To update when the feature becomes available Concrete
# FIXME: https://github.com/zama-ai/concrete-numpy-internal/issues/1714
def check_circuit_has_no_tlu_impl(circuit: Circuit):
"""Check a circuit has no TLU."""
if "apply_" in circuit.mlir and "_lookup_table" in circuit.mlir:
raise AssertionError("The circuit contains at least one TLU")
def check_circuit_precision_impl(circuit: Circuit):
"""Check a circuit doesn't need too much precision."""
circuit_precision = circuit.graph.maximum_integer_bit_width()
if circuit_precision > MAXIMUM_TLU_BIT_WIDTH:
raise AssertionError(
f"The circuit is precision is expected to be less than {MAXIMUM_TLU_BIT_WIDTH}. "
f"Got {circuit_precision}."
)
@pytest.fixture
def check_graph_input_has_no_tlu():
"""Check a circuit has no TLU on input."""
return check_graph_input_has_no_tlu_impl
@pytest.fixture
def check_graph_output_has_no_tlu():
"""Check a circuit has no TLU on output."""
return check_graph_output_has_no_tlu_impl
@pytest.fixture
def check_graph_has_no_input_output_tlu():
"""Check a circuit has no TLU on input or output."""
return check_graph_has_no_input_output_tlu_impl
@pytest.fixture
def check_circuit_has_no_tlu():
"""Check a circuit has no TLU."""
return check_circuit_has_no_tlu_impl
@pytest.fixture
def check_circuit_precision():
"""Check that the circuit is valid."""
return check_circuit_precision_impl
def check_array_equality_impl(actual: Any, expected: Any, verbose: bool = True):
"""Assert that `actual` is equal to `expected`."""
assert numpy.array_equal(actual, expected), (
""
if not verbose
else f"""
Expected Output
===============
{expected}
Actual Output
=============
{actual}
"""
)
@pytest.fixture
def check_array_equality():
"""Fixture to check array equality."""
return check_array_equality_impl
@pytest.fixture
def check_float_arrays_equal():
"""Fixture to check if two float arrays are equal with epsilon precision tolerance."""
def check_float_arrays_equal_impl(a, b):
assert numpy.all(numpy.isclose(a, b, rtol=0, atol=0.001))
return check_float_arrays_equal_impl
@pytest.fixture
def check_r2_score():
"""Fixture to check r2 score."""
def check_r2_score_impl(expected, actual, acceptance_score=0.99):
expected = expected.ravel()
actual = actual.ravel()
mean_expected = numpy.mean(expected)
deltas_expected = expected - mean_expected
deltas_actual = actual - expected
r2_den = numpy.sum(deltas_expected**2)
r2_num = numpy.sum(deltas_actual**2)
# If the values are really close, we consider the test passes
is_close = numpy.allclose(expected, actual, atol=1e-4, rtol=0)
if is_close:
return
# If the variance of the target values is very low, fix the max allowed for residuals
# to a known value
r2_den = max(r2_den, 1e-5)
r_square = 1 - r2_num / r2_den
assert (
r_square >= acceptance_score
), f"r2 score of {numpy.round(r_square, 4)} is not high enough."
return check_r2_score_impl
@pytest.fixture
def check_accuracy():
"""Fixture to check the accuracy."""
def check_accuracy_impl(expected, actual, threshold=0.9):
accuracy = numpy.mean(expected == actual)
assert accuracy >= threshold, f"Accuracy of {accuracy} is not high enough ({threshold})."
return check_accuracy_impl
@pytest.fixture
def load_data():
"""Fixture for generating random regression or classification problem."""
def load_data_impl(
model_class: Callable,
*args,
random_state: Optional[int] = None,
**kwargs,
):
"""Generate a random regression or classification problem.
scikit-learn's make_regression() method generates a random regression problem without any
domain restrictions. However, some models can only handle non negative or (strictly)
positive target values. This function therefore adapts it in order to make it work for any
tested regressors.
For classifier, scikit-learn's make_classification() method is directly called.
Args:
model_class (Callable): The Concrete ML model class to generate the data for.
*args: Positional arguments to consider for generating the data.
random_state (int): Determines random number generation for data-set creation.
**kwargs: Keyword arguments to consider for generating the data.
"""
# Create a random_state value in order to seed the data generation functions. This enables
# all tests that use this fixture to be deterministic and thus reproducible.
random_state = numpy.random.randint(0, 2**15) if random_state is None else random_state
# If the data-set should be generated for a classification problem.
if is_classifier_or_partial_classifier(model_class) or is_brevitas_model(model_class):
generated_classifier = list(
make_classification(*args, **kwargs, random_state=random_state)
)
# Cast inputs to float32 as skorch QNNs don't handle float64 values
if is_model_class_in_a_list(model_class, get_sklearn_neural_net_models()):
generated_classifier[0] = generated_classifier[0].astype(numpy.float32)
return tuple(generated_classifier)
# If the data-set should be generated for a regression problem.
if is_regressor_or_partial_regressor(model_class):
generated_regression = list(make_regression(*args, **kwargs, random_state=random_state))
# Generalized Linear Models can only handle positive target values,
# often strictly positive.
if is_model_class_in_a_list(
model_class, [GammaRegressor, PoissonRegressor, TweedieRegressor]
):
generated_regression[1] = numpy.abs(generated_regression[1]) + 1
# If the model is a neural network and if the data-set only contains a single target
# (e.g., of shape (n,)), reshape the target array (e.g., to shape (n,1))
if is_model_class_in_a_list(model_class, get_sklearn_neural_net_models()):
if len(generated_regression[1].shape) == 1:
generated_regression[1] = generated_regression[1].reshape(-1, 1)
# Cast inputs and targets to float32 as skorch QNNs don't handle float64 values
generated_regression[0] = generated_regression[0].astype(numpy.float32)
generated_regression[1] = generated_regression[1].astype(numpy.float32)
return tuple(generated_regression)
raise ValueError(
"Model class type is unsupported. Expected a Concrete ML regressor or classifier, or "
f"a functool.partial version of it, but got {model_class}."
)
return load_data_impl
@pytest.fixture
def check_is_good_execution_for_cml_vs_circuit():
"""Compare quantized module or built-in inference vs Concrete circuit."""
def check_is_good_execution_for_cml_vs_circuit_impl(
inputs: Union[tuple, numpy.ndarray],
model: Union[Callable, QuantizedModule, QuantizedTorchEstimatorMixin],
simulate: bool,
n_allowed_runs: int = 5,
):
"""Check that a model or a quantized module give the same output as the circuit.
Args:
inputs (tuple, numpy.ndarray): inputs for the model.
model (Callable, QuantizedModule, QuantizedTorchEstimatorMixin): either the
Concrete ML sklearn built-in model or a quantized module.
simulate (bool): whether to run the execution in FHE or in simulated mode.
n_allowed_runs (int): in case of FHE execution randomness can make the output slightly
different this allows to run the evaluation multiple times
"""
inputs = to_tuple(inputs)
# Make sure that the inputs are floating points
assert all_values_are_floats(*inputs), (
f"Input values are expected to be floating points of dtype {SUPPORTED_FLOAT_TYPES}. "
"Do not quantize the inputs manually as it is handled within this method."
)
fhe_mode = "simulate" if simulate else "execute"
for _ in range(n_allowed_runs):
# Check if model is QuantizedModule
if isinstance(model, QuantizedModule):
results_cnp_circuit = model.forward(*inputs, fhe=fhe_mode)
results_model = model.forward(*inputs, fhe="disable")
else:
assert isinstance(
model,
(QuantizedTorchEstimatorMixin, BaseTreeEstimatorMixin, SklearnLinearModelMixin),
)
if model._is_a_public_cml_model: # pylint: disable=protected-access
# Only check probabilities for classifiers as we only want to check that the
# circuit is outputs (after de-quantization) are correct. We thus want to avoid
# as much post-processing steps in the clear (that could lead to more flaky
# tests), especially since these results are tested in other tests such as the
# `check_subfunctions_in_fhe`
if is_classifier_or_partial_classifier(model):
results_cnp_circuit = model.predict_proba(*inputs, fhe=fhe_mode)
results_model = model.predict_proba(*inputs, fhe="disable")
else:
results_cnp_circuit = model.predict(*inputs, fhe=fhe_mode)
results_model = model.predict(*inputs, fhe="disable")
else:
raise ValueError(
"numpy_function should be a built-in concrete sklearn model or "
"a QuantizedModule object."
)
# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2806
# fp64 comparisons do not pass the numpy.array_equal while the quantized
# int64 values do.
if numpy.isclose(results_cnp_circuit, results_model).all():
return
raise RuntimeError(
f"Mismatch between circuit results:\n{results_cnp_circuit}\n"
f"and model function results:\n{results_model}"
)
return check_is_good_execution_for_cml_vs_circuit_impl