-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathball_process_lib.py
282 lines (210 loc) · 8.03 KB
/
ball_process_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
Library to extract and model ball trajectory
"""
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
HALF_GRAVITY = 4.9
BALL_LOWER_RGB = (70, 15, 10)
BALL_UPPER_RGB = (200, 120, 100)
POINTS_IN_AREA_DIST = 0.15
def fit_sphere(xyz_points):
"""
Fits a sphere to 3d point cloud
Args:
xyz_points: (n, 3) numpy array of points
Returns:
List with x center, y center, z center and radius
"""
A = np.hstack((-2 * xyz_points, np.ones((xyz_points.shape[0], 1))))
b = np.sum(-1 * np.square(xyz_points), axis=1)
x, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
r = np.sqrt(np.sum(np.square(x[:3])) - x[3])
return [x[0], x[1], x[2], r]
def _fit_linear(inputs, outputs):
"""
Fits a line to data
Args:
inputs: (n, 1) numpy array of input values
outputs: (n, 1) numpy array of outputs values
Returns:
Slope and bias as floats
"""
assert inputs.shape[1] == 1
assert outputs.shape[1] == 1
A = np.hstack((inputs, np.ones((inputs.shape[0], 1))))
b = outputs
x, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
return x[0], x[1]
def _fit_quadratic(inputs, outputs):
"""
Fits a quadratic to data
Args:
inputs: (n, 1) numpy array of input values
outputs: (n, 1) numpy array of outputs values
Returns:
Quadratic coeff, linear coeff, and bias as floats
"""
assert inputs.shape[1] == 1
assert outputs.shape[1] == 1
A = np.hstack((np.square(inputs), inputs, np.ones((inputs.shape[0], 1))))
b = outputs
x, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
return x[0], x[1], x[2]
def fit_trajectory_regression(xyz_points, times):
"""
Fits a trajectory to a ball arc
Args:
xyz_points: (n, 3) numpy array of points
times: (n, 1) numpy array of times
Returns:
Function with time (int) as input and (1, 3) numpy array as output
"""
times = np.array(times).reshape(-1, 1)
x_slope, x_intercept = _fit_linear(times, xyz_points[:, 0].reshape(-1, 1))
y_slope, y_intercept = _fit_linear(times, xyz_points[:, 1].reshape(-1, 1))
z_quad, z_lin, z_intercept = _fit_quadratic(times, xyz_points[:, 2].reshape(-1, 1))
# print(f"x_slope: {x_slope}, x_intercept: {x_intercept}")
# print(f"y_slope: {y_slope}, y_intercept: {y_intercept}")
# print(f"z_quad: {z_quad}, z_lin: {z_lin}, z_intercept: {z_intercept}")
def trajectory(time):
"""
Returns the position of the ball at specific time
Args:
time: scalar int for time or (n, 1) array of times
Returns:
(n, 3) numpy array of x, y, an z positions
"""
time = np.array(time).reshape(-1, 1)
x = x_slope * time + x_intercept
y = y_slope * time + y_intercept
z = z_quad * (time**2) + z_lin * time + z_intercept
return np.hstack((x, y, z))
def land_position(axis, landing_position):
assert axis in ["x", "y", "z"]
if axis == "x":
time = (landing_position - x_intercept) / x_slope
elif axis == "y":
time = (landing_position - y_intercept) / y_slope
else:
a = z_quad
b = z_lin
c = z_intercept - landing_position
time = (-b + np.sqrt(b**2 - (4 * a * c))) / (2 * a)
return trajectory(time), time
return trajectory, land_position
def fit_trajectory_physics(xyz_points, times):
"""
Fits a trajectory to a ball arc
Args:
xyz_points: (2, 3) numpy array of points
times: (n, 1) numpy array of times
Returns:
Function with time (int) as input and (1, 3) numpy array as output
"""
times = np.array(times).reshape(-1, 1)
elapsed_time = times[1, 0] - times[0, 0]
v_x_0 = (xyz_points[1, 0] - xyz_points[0, 0]) / elapsed_time
v_y_0 = (xyz_points[1, 1] - xyz_points[0, 1]) / elapsed_time
v_z_0 = (
(xyz_points[1, 2] - xyz_points[0, 2] + HALF_GRAVITY * (elapsed_time**2))
) / elapsed_time
print(f"x_slope: {v_x_0}, x_intercept: {xyz_points[0, 0]}")
print(f"y_slope: {v_y_0}, y_intercept: {xyz_points[0, 1]}")
print(f"z_quad: {4.9}, z_lin: {v_z_0}, z_intercept: {xyz_points[0, 2]}")
def trajectory(time):
time = np.array(time).reshape(-1, 1) - times[0, 0]
x = xyz_points[0, 0] + v_x_0 * time
y = xyz_points[0, 1] + v_y_0 * time
z = xyz_points[0, 2] + v_z_0 * time - (HALF_GRAVITY * (time**2))
return np.hstack((x, y, z))
def land_position(axis, landing_position):
assert axis in ["x", "y", "z"]
if axis == "x":
time = (landing_position - xyz_points[0, 0]) / v_x_0
elif axis == "y":
time = (landing_position - xyz_points[0, 1]) / v_y_0
else:
a = -HALF_GRAVITY
b = v_z_0
c = xyz_points[0, 2] - landing_position
time = (-b + np.sqrt(b**2 - (4 * a * c))) / (2 * a)
time += times[0, 0]
return trajectory(time), time
return trajectory, land_position
def _points_in_area(reference, cluster, distance):
x_min = cluster["x"].min()
x_max = cluster["x"].max()
y_min = cluster["y"].min()
y_max = cluster["y"].max()
z_min = cluster["z"].min()
z_max = cluster["z"].max()
return (
(reference["x"] > x_min - distance)
& (reference["x"] < x_max + distance)
& (reference["y"] > y_min - distance)
& (reference["y"] < y_max + distance)
& (reference["z"] > z_min - distance)
& (reference["z"] < z_max + distance)
).sum()
def identify_ball_by_background(background, clusters):
if len(clusters) > 1:
least_points = _points_in_area(background, clusters[0], POINTS_IN_AREA_DIST)
least_point_cluster = clusters[0]
for index in range(1, len(clusters)):
points = _points_in_area(background, clusters[index], POINTS_IN_AREA_DIST)
if points < least_points:
least_points = points
least_point_cluster = clusters[index]
else:
least_point_cluster = clusters[0]
return least_point_cluster
def verify_ball(ball, min_color, max_color, pixel_threshold):
r_min, g_min, b_min = min_color
r_max, g_max, b_max = max_color
qty_in_range = (
(ball["r"] >= r_min)
& (ball["r"] <= r_max)
& (ball["g"] >= g_min)
& (ball["g"] <= g_max)
& (ball["b"] >= b_min)
& (ball["b"] <= b_max)
).sum()
return qty_in_range >= pixel_threshold
def get_ball_position(ball, offset_size, offset_dim=1):
mean_x = ball["x"].mean()
mean_y = ball["y"].mean()
mean_z = ball["z"].mean()
position = [mean_x, mean_z, mean_y]
position[offset_dim] += offset_size
return position
def process_ball(data, reference, return_clusters=False):
if isinstance(data, np.ndarray):
data = pd.DataFrame(data, columns=["x", "y", "z", "r", "g", "b"])
reference = pd.DataFrame(reference, columns=["x", "y", "z", "r", "g", "b"])
# data = data[data["y"] < 2.5]
if data.shape[0] > 5:
dbscan = DBSCAN(eps=0.05, min_samples=20)
x_z = data[["x", "y", "z"]].to_numpy()
data["c"] = dbscan.fit_predict(x_z)
data = data[data["c"] != -1]
# Make cluster list of points from labels returned by fit_predict
cluster_points = []
for _, value in enumerate(data["c"].unique()):
cluster_points.append(
data[data["c"] == value][["x", "y", "z", "r", "g", "b"]]
)
# If clusters exist
if len(cluster_points) >= 1:
ball_cluster = identify_ball_by_background(reference, cluster_points)
is_ball = verify_ball(ball_cluster, BALL_LOWER_RGB, BALL_UPPER_RGB, 5)
if is_ball:
sphere = fit_sphere(np.array(ball_cluster[["x", "y", "z"]]))
if return_clusters:
return cluster_points, sphere
else:
return sphere
if return_clusters:
return cluster_points, None
else:
return None