forked from DataDog/dd-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregator.py
986 lines (829 loc) · 36.1 KB
/
aggregator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
# stdlib
import logging
from time import time
# project
from checks.metric_types import MetricTypes
log = logging.getLogger(__name__)
# This is used to ensure that metrics with a timestamp older than
# RECENT_POINT_THRESHOLD_DEFAULT seconds (or the value passed in to
# the MetricsAggregator constructor) get discarded rather than being
# input into the incorrect bucket. Currently, the MetricsAggregator
# does not support submitting values for the past, and all values get
# submitted for the timestamp passed into the flush() function.
# The MetricsBucketAggregator uses times that are aligned to "buckets"
# that are the length of the interval that is passed into the
# MetricsBucketAggregator constructor.
RECENT_POINT_THRESHOLD_DEFAULT = 3600
class Infinity(Exception):
pass
class UnknownValue(Exception):
pass
class Metric(object):
"""
A base metric class that accepts points, slices them into time intervals
and performs roll-ups within those intervals.
"""
def sample(self, value, sample_rate, timestamp=None):
""" Add a point to the given metric. """
raise NotImplementedError()
def flush(self, timestamp, interval):
""" Flush all metrics up to the given timestamp. """
raise NotImplementedError()
class Gauge(Metric):
""" A metric that tracks a value at particular points in time. """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.value = None
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.last_sample_time = None
self.timestamp = time()
def sample(self, value, sample_rate, timestamp=None):
self.value = value
self.last_sample_time = time()
self.timestamp = timestamp
def flush(self, timestamp, interval):
if self.value is not None:
res = [self.formatter(
metric=self.name,
timestamp=self.timestamp or timestamp,
value=self.value,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name,
metric_type=MetricTypes.GAUGE,
interval=interval,
)]
self.value = None
return res
return []
class BucketGauge(Gauge):
""" A metric that tracks a value at particular points in time.
The difference beween this class and Gauge is that this class will
report that gauge sample time as the time that Metric is flushed, as
opposed to the time that the sample was collected.
"""
def flush(self, timestamp, interval):
if self.value is not None:
res = [self.formatter(
metric=self.name,
timestamp=timestamp,
value=self.value,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name,
metric_type=MetricTypes.GAUGE,
interval=interval,
)]
self.value = None
return res
return []
class Count(Metric):
""" A metric that tracks a count. """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.value = None
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
self.value = (self.value or 0) + value
self.last_sample_time = time()
def flush(self, timestamp, interval):
if self.value is None:
return []
try:
return [self.formatter(
metric=self.name,
value=self.value,
timestamp=timestamp,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name,
metric_type=MetricTypes.COUNT,
interval=interval,
)]
finally:
self.value = None
class MonotonicCount(Metric):
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.prev_counter = None
self.curr_counter = None
self.count = None
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
if self.curr_counter is None:
self.curr_counter = value
else:
self.prev_counter = self.curr_counter
self.curr_counter = value
prev = self.prev_counter
curr = self.curr_counter
if prev is not None and curr is not None:
self.count = (self.count or 0) + max(0, curr - prev)
self.last_sample_time = time()
def flush(self, timestamp, interval):
if self.count is None:
return []
try:
return [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric=self.name,
value=self.count,
timestamp=timestamp,
metric_type=MetricTypes.COUNT,
interval=interval
)]
finally:
self.prev_counter = self.curr_counter
self.curr_counter = None
self.count = None
class Counter(Metric):
""" A metric that tracks a counter value. """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.value = 0
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
self.value += value * int(1 / sample_rate)
self.last_sample_time = time()
def flush(self, timestamp, interval):
try:
value = self.value / interval
return [self.formatter(
metric=self.name,
value=value,
timestamp=timestamp,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name,
metric_type=MetricTypes.RATE,
interval=interval,
)]
finally:
self.value = 0
DEFAULT_HISTOGRAM_AGGREGATES = ['max', 'median', 'avg', 'count']
DEFAULT_HISTOGRAM_PERCENTILES = [0.95]
class Histogram(Metric):
""" A metric to track the distribution of a set of values. """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.count = 0
self.samples = []
self.aggregates = extra_config['aggregates'] if\
extra_config is not None and extra_config.get('aggregates') is not None\
else DEFAULT_HISTOGRAM_AGGREGATES
self.percentiles = extra_config['percentiles'] if\
extra_config is not None and extra_config.get('percentiles') is not None\
else DEFAULT_HISTOGRAM_PERCENTILES
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
self.count += int(1 / sample_rate)
self.samples.append(value)
self.last_sample_time = time()
def flush(self, ts, interval):
if not self.count:
return []
self.samples.sort()
length = len(self.samples)
min_ = self.samples[0]
max_ = self.samples[-1]
med = self.samples[int(round(length/2 - 1))]
avg = sum(self.samples) / float(length)
aggregators = [
('min', min_, MetricTypes.GAUGE),
('max', max_, MetricTypes.GAUGE),
('median', med, MetricTypes.GAUGE),
('avg', avg, MetricTypes.GAUGE),
('count', self.count/interval, MetricTypes.RATE),
]
metric_aggrs = [
(agg_name, agg_func, m_type)
for agg_name, agg_func, m_type in aggregators
if agg_name in self.aggregates
]
metrics = [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric='%s.%s' % (self.name, suffix),
value=value,
timestamp=ts,
metric_type=metric_type,
interval=interval) for suffix, value, metric_type in metric_aggrs
]
for p in self.percentiles:
val = self.samples[int(round(p * length - 1))]
name = '%s.%spercentile' % (self.name, int(p * 100))
metrics.append(self.formatter(
hostname=self.hostname,
tags=self.tags,
metric=name,
value=val,
timestamp=ts,
metric_type=MetricTypes.GAUGE,
interval=interval,
))
# Reset our state.
self.samples = []
self.count = 0
return metrics
class Set(Metric):
""" A metric to track the number of unique elements in a set. """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.values = set()
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
self.values.add(value)
self.last_sample_time = time()
def flush(self, timestamp, interval):
if not self.values:
return []
try:
return [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric=self.name,
value=len(self.values),
timestamp=timestamp,
metric_type=MetricTypes.GAUGE,
interval=interval,
)]
finally:
self.values = set()
class Rate(Metric):
""" Track the rate of metrics over each flush interval """
def __init__(self, formatter, name, tags, hostname, device_name, extra_config=None):
self.formatter = formatter
self.name = name
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.samples = []
self.last_sample_time = None
def sample(self, value, sample_rate, timestamp=None):
ts = time()
self.samples.append((int(ts), value))
self.last_sample_time = ts
def _rate(self, sample1, sample2):
interval = sample2[0] - sample1[0]
if interval == 0:
log.warn('Metric %s has an interval of 0. Not flushing.' % self.name)
raise Infinity()
delta = sample2[1] - sample1[1]
if delta < 0:
log.info('Metric %s has a rate < 0. Counter may have been Reset.' % self.name)
raise UnknownValue()
return (delta / float(interval))
def flush(self, timestamp, interval):
if len(self.samples) < 2:
return []
try:
try:
val = self._rate(self.samples[-2], self.samples[-1])
except Exception:
return []
return [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric=self.name,
value=val,
timestamp=timestamp,
metric_type=MetricTypes.GAUGE,
interval=interval
)]
finally:
self.samples = self.samples[-1:]
class Aggregator(object):
"""
Abstract metric aggregator class.
"""
# Types of metrics that allow strings
ALLOW_STRINGS = ['s', ]
def __init__(self, hostname, interval=1.0, expiry_seconds=300,
formatter=None, recent_point_threshold=None,
histogram_aggregates=None, histogram_percentiles=None,
utf8_decoding=False):
self.events = []
self.service_checks = []
self.total_count = 0
self.count = 0
self.event_count = 0
self.service_check_count = 0
self.hostname = hostname
self.expiry_seconds = expiry_seconds
self.formatter = formatter or api_formatter
self.interval = float(interval)
recent_point_threshold = recent_point_threshold or RECENT_POINT_THRESHOLD_DEFAULT
self.recent_point_threshold = int(recent_point_threshold)
self.num_discarded_old_points = 0
# Additional config passed when instantiating metric configs
self.metric_config = {
Histogram: {
'aggregates': histogram_aggregates,
'percentiles': histogram_percentiles
}
}
self.utf8_decoding = utf8_decoding
def packets_per_second(self, interval):
if interval == 0:
return 0
return round(float(self.count)/interval, 2)
def parse_metric_packet(self, packet):
"""
Schema of a dogstatsd packet:
<name>:<value>|<metric_type>|@<sample_rate>|#<tag1_name>:<tag1_value>,<tag2_name>:<tag2_value>:<value>|<metric_type>...
"""
parsed_packets = []
name_and_metadata = packet.split(':', 1)
if len(name_and_metadata) != 2:
raise Exception('Unparseable metric packet: %s' % packet)
name = name_and_metadata[0]
broken_split = name_and_metadata[1].split(':')
data = []
partial_datum = None
for token in broken_split:
# We need to fix the tag groups that got broken by the : split
if partial_datum is None:
partial_datum = token
elif "|" not in token:
partial_datum += ":" + token
else:
data.append(partial_datum)
partial_datum = token
data.append(partial_datum)
for datum in data:
value_and_metadata = datum.split('|')
if len(value_and_metadata) < 2:
raise Exception('Unparseable metric packet: %s' % packet)
# Submit the metric
raw_value = value_and_metadata[0]
metric_type = value_and_metadata[1]
if metric_type in self.ALLOW_STRINGS:
value = raw_value
else:
# Try to cast as an int first to avoid precision issues, then as a
# float.
try:
value = int(raw_value)
except ValueError:
try:
value = float(raw_value)
except ValueError:
# Otherwise, raise an error saying it must be a number
raise Exception('Metric value must be a number: %s, %s' % (name, raw_value))
# Parse the optional values - sample rate & tags.
sample_rate = 1
tags = None
for m in value_and_metadata[2:]:
# Parse the sample rate
if m[0] == '@':
sample_rate = float(m[1:])
assert 0 <= sample_rate <= 1
elif m[0] == '#':
tags = tuple(sorted(m[1:].split(',')))
parsed_packets.append((name, value, metric_type, tags,sample_rate))
return parsed_packets
def _unescape_sc_content(self, string):
return string.replace('\\n', '\n').replace('m\:', 'm:')
def _unescape_event_text(self, string):
return string.replace('\\n', '\n')
def parse_event_packet(self, packet):
try:
name_and_metadata = packet.split(':', 1)
if len(name_and_metadata) != 2:
raise Exception(u'Unparseable event packet: %s' % packet)
# Event syntax:
# _e{5,4}:title|body|meta
name = name_and_metadata[0]
metadata = name_and_metadata[1]
title_length, text_length = name.split(',')
title_length = int(title_length[3:])
text_length = int(text_length[:-1])
event = {
'title': metadata[:title_length],
'text': self._unescape_event_text(metadata[title_length+1:title_length+text_length+1])
}
meta = metadata[title_length+text_length+1:]
for m in meta.split('|')[1:]:
if m[0] == u't':
event['alert_type'] = m[2:]
elif m[0] == u'k':
event['aggregation_key'] = m[2:]
elif m[0] == u's':
event['source_type_name'] = m[2:]
elif m[0] == u'd':
event['date_happened'] = int(m[2:])
elif m[0] == u'p':
event['priority'] = m[2:]
elif m[0] == u'h':
event['hostname'] = m[2:]
elif m[0] == u'#':
event['tags'] = sorted(m[1:].split(u','))
return event
except (IndexError, ValueError):
raise Exception(u'Unparseable event packet: %s' % packet)
def parse_sc_packet(self, packet):
try:
_, data_and_metadata = packet.split('|', 1)
# Service check syntax:
# _sc|check_name|status|meta
if data_and_metadata.count('|') == 1:
# Case with no metadata
check_name, status = data_and_metadata.split('|')
metadata = ''
else:
check_name, status, metadata = data_and_metadata.split('|', 2)
service_check = {
'check_name': check_name,
'status': int(status)
}
message_delimiter = '|m:' if '|m:' in metadata else 'm:'
if message_delimiter in metadata:
meta, message = metadata.rsplit(message_delimiter, 1)
service_check['message'] = self._unescape_sc_content(message)
else:
meta = metadata
if not meta:
return service_check
meta = unicode(meta)
for m in meta.split('|'):
if m[0] == u'd':
service_check['timestamp'] = float(m[2:])
elif m[0] == u'h':
service_check['hostname'] = m[2:]
elif m[0] == u'#':
service_check['tags'] = sorted(m[1:].split(u','))
return service_check
except (IndexError, ValueError):
raise Exception(u'Unparseable service check packet: %s' % packet)
def submit_packets(self, packets):
# We should probably consider that packets are always encoded
# in utf8, but decoding all packets has an perf overhead of 7%
# So we let the user decide if we wants utf8 by default
# Keep a very conservative approach anyhow
# Clients MUST always send UTF-8 encoded content
if self.utf8_decoding:
packets = unicode(packets, 'utf-8', errors='replace')
for packet in packets.splitlines():
if not packet.strip():
continue
if packet.startswith('_e'):
self.event_count += 1
event = self.parse_event_packet(packet)
self.event(**event)
elif packet.startswith('_sc'):
self.service_check_count += 1
service_check = self.parse_sc_packet(packet)
self.service_check(**service_check)
else:
self.count += 1
parsed_packets = self.parse_metric_packet(packet)
for name, value, mtype, tags, sample_rate in parsed_packets:
hostname, device_name, tags = self._extract_magic_tags(tags)
self.submit_metric(name, value, mtype, tags=tags, hostname=hostname,
device_name=device_name, sample_rate=sample_rate)
def _extract_magic_tags(self, tags):
"""Magic tags (host, device) override metric hostname and device_name attributes"""
hostname = None
device_name = None
# This implementation avoid list operations for the common case
if tags:
tags_to_remove = []
for tag in tags:
if tag.startswith('host:'):
hostname = tag[5:]
tags_to_remove.append(tag)
elif tag.startswith('device:'):
device_name = tag[7:]
tags_to_remove.append(tag)
if tags_to_remove:
# tags is a tuple already sorted, we convert it into a list to pop elements
tags = list(tags)
for tag in tags_to_remove:
tags.remove(tag)
tags = tuple(tags) or None
return hostname, device_name, tags
def submit_metric(self, name, value, mtype, tags=None, hostname=None,
device_name=None, timestamp=None, sample_rate=1):
""" Add a metric to be aggregated """
raise NotImplementedError()
def event(self, title, text, date_happened=None, alert_type=None, aggregation_key=None, source_type_name=None, priority=None, tags=None, hostname=None):
event = {
'msg_title': title,
'msg_text': text,
}
if date_happened is not None:
event['timestamp'] = date_happened
else:
event['timestamp'] = int(time())
if alert_type is not None:
event['alert_type'] = alert_type
if aggregation_key is not None:
event['aggregation_key'] = aggregation_key
if source_type_name is not None:
event['source_type_name'] = source_type_name
if priority is not None:
event['priority'] = priority
if tags is not None:
event['tags'] = sorted(tags)
if hostname is not None:
event['host'] = hostname
else:
event['host'] = self.hostname
self.events.append(event)
def service_check(self, check_name, status, tags=None, timestamp=None,
hostname=None, message=None):
service_check = {
'check': check_name,
'status': status,
'timestamp': timestamp or int(time())
}
if tags is not None:
service_check['tags'] = sorted(tags)
if hostname is not None:
service_check['host_name'] = hostname
else:
service_check['host_name'] = self.hostname
if message is not None:
service_check['message'] = message
self.service_checks.append(service_check)
def flush(self):
""" Flush aggregated metrics """
raise NotImplementedError()
def flush_events(self):
events = self.events
self.events = []
self.total_count += self.event_count
self.event_count = 0
log.debug("Received %d events since last flush" % len(events))
return events
def flush_service_checks(self):
service_checks = self.service_checks
self.service_checks = []
self.total_count += self.service_check_count
self.service_check_count = 0
log.debug("Received {0} service check runs since last flush".format(len(service_checks)))
return service_checks
def send_packet_count(self, metric_name):
self.submit_metric(metric_name, self.count, 'g')
class MetricsBucketAggregator(Aggregator):
"""
A metric aggregator class.
"""
def __init__(self, hostname, interval=1.0, expiry_seconds=300,
formatter=None, recent_point_threshold=None,
histogram_aggregates=None, histogram_percentiles=None,
utf8_decoding=False):
super(MetricsBucketAggregator, self).__init__(
hostname,
interval,
expiry_seconds,
formatter,
recent_point_threshold,
histogram_aggregates,
histogram_percentiles,
utf8_decoding
)
self.metric_by_bucket = {}
self.last_sample_time_by_context = {}
self.current_bucket = None
self.current_mbc = {}
self.last_flush_cutoff_time = 0
self.metric_type_to_class = {
'g': BucketGauge,
'c': Counter,
'h': Histogram,
'ms': Histogram,
's': Set,
}
def calculate_bucket_start(self, timestamp):
return timestamp - (timestamp % self.interval)
def submit_metric(self, name, value, mtype, tags=None, hostname=None,
device_name=None, timestamp=None, sample_rate=1):
# Avoid calling extra functions to dedupe tags if there are none
# Note: if you change the way that context is created, please also change create_empty_metrics,
# which counts on this order
# Keep hostname with empty string to unset it
hostname = hostname if hostname is not None else self.hostname
if tags is None:
context = (name, tuple(), hostname, device_name)
else:
context = (name, tuple(sorted(set(tags))), hostname, device_name)
cur_time = time()
# Check to make sure that the timestamp that is passed in (if any) is not older than
# recent_point_threshold. If so, discard the point.
if timestamp is not None and cur_time - int(timestamp) > self.recent_point_threshold:
log.debug("Discarding %s - ts = %s , current ts = %s " % (name, timestamp, cur_time))
self.num_discarded_old_points += 1
else:
timestamp = timestamp or cur_time
# Keep track of the buckets using the timestamp at the start time of the bucket
bucket_start_timestamp = self.calculate_bucket_start(timestamp)
if bucket_start_timestamp == self.current_bucket:
metric_by_context = self.current_mbc
else:
if bucket_start_timestamp not in self.metric_by_bucket:
self.metric_by_bucket[bucket_start_timestamp] = {}
metric_by_context = self.metric_by_bucket[bucket_start_timestamp]
self.current_bucket = bucket_start_timestamp
self.current_mbc = metric_by_context
if context not in metric_by_context:
metric_class = self.metric_type_to_class[mtype]
metric_by_context[context] = metric_class(self.formatter, name, tags,
hostname, device_name, self.metric_config.get(metric_class))
metric_by_context[context].sample(value, sample_rate, timestamp)
def create_empty_metrics(self, sample_time_by_context, expiry_timestamp, flush_timestamp, metrics):
# Even if no data is submitted, Counters keep reporting "0" for expiry_seconds. The other Metrics
# (Set, Gauge, Histogram) do not report if no data is submitted
for context, last_sample_time in sample_time_by_context.items():
if last_sample_time < expiry_timestamp:
log.debug("%s hasn't been submitted in %ss. Expiring." % (context, self.expiry_seconds))
self.last_sample_time_by_context.pop(context, None)
else:
# The expiration currently only applies to Counters
# This counts on the ordering of the context created in submit_metric not changing
metric = Counter(self.formatter, context[0], context[1], context[2], context[3])
metrics += metric.flush(flush_timestamp, self.interval)
def flush(self):
cur_time = time()
flush_cutoff_time = self.calculate_bucket_start(cur_time)
expiry_timestamp = cur_time - self.expiry_seconds
metrics = []
if self.metric_by_bucket:
# We want to process these in order so that we can check for and expired metrics and
# re-create non-expired metrics. We also mutate self.metric_by_bucket.
for bucket_start_timestamp in sorted(self.metric_by_bucket.keys()):
metric_by_context = self.metric_by_bucket[bucket_start_timestamp]
if bucket_start_timestamp < flush_cutoff_time:
not_sampled_in_this_bucket = self.last_sample_time_by_context.copy()
# We mutate this dictionary while iterating so don't use an iterator.
for context, metric in metric_by_context.items():
if metric.last_sample_time < expiry_timestamp:
# This should never happen
log.warning("%s hasn't been submitted in %ss. Expiring." % (context, self.expiry_seconds))
not_sampled_in_this_bucket.pop(context, None)
self.last_sample_time_by_context.pop(context, None)
else:
metrics += metric.flush(bucket_start_timestamp, self.interval)
if isinstance(metric, Counter):
self.last_sample_time_by_context[context] = metric.last_sample_time
not_sampled_in_this_bucket.pop(context, None)
# We need to account for Metrics that have not expired and were not flushed for this bucket
self.create_empty_metrics(not_sampled_in_this_bucket, expiry_timestamp, bucket_start_timestamp, metrics)
del self.metric_by_bucket[bucket_start_timestamp]
else:
# Even if there are no metrics in this flush, there may be some non-expired counters
# We should only create these non-expired metrics if we've passed an interval since the last flush
if flush_cutoff_time >= self.last_flush_cutoff_time + self.interval:
self.create_empty_metrics(self.last_sample_time_by_context.copy(), expiry_timestamp,
flush_cutoff_time-self.interval, metrics)
# Log a warning regarding metrics with old timestamps being submitted
if self.num_discarded_old_points > 0:
log.warn('%s points were discarded as a result of having an old timestamp' % self.num_discarded_old_points)
self.num_discarded_old_points = 0
# Save some stats.
log.debug("received %s payloads since last flush" % self.count)
self.total_count += self.count
self.count = 0
self.current_bucket = None
self.current_mbc = {}
self.last_flush_cutoff_time = flush_cutoff_time
return metrics
class MetricsAggregator(Aggregator):
"""
A metric aggregator class.
"""
def __init__(self, hostname, interval=1.0, expiry_seconds=300,
formatter=None, recent_point_threshold=None,
histogram_aggregates=None, histogram_percentiles=None,
utf8_decoding=False):
super(MetricsAggregator, self).__init__(
hostname,
interval,
expiry_seconds,
formatter,
recent_point_threshold,
histogram_aggregates,
histogram_percentiles,
utf8_decoding
)
self.metrics = {}
self.metric_type_to_class = {
'g': Gauge,
'ct': Count,
'ct-c': MonotonicCount,
'c': Counter,
'h': Histogram,
'ms': Histogram,
's': Set,
'_dd-r': Rate,
}
def submit_metric(self, name, value, mtype, tags=None, hostname=None,
device_name=None, timestamp=None, sample_rate=1):
# Avoid calling extra functions to dedupe tags if there are none
# Keep hostname with empty string to unset it
hostname = hostname if hostname is not None else self.hostname
if tags is None:
context = (name, tuple(), hostname, device_name)
else:
context = (name, tuple(sorted(set(tags))), hostname, device_name)
if context not in self.metrics:
metric_class = self.metric_type_to_class[mtype]
self.metrics[context] = metric_class(self.formatter, name, tags,
hostname, device_name, self.metric_config.get(metric_class))
cur_time = time()
if timestamp is not None and cur_time - int(timestamp) > self.recent_point_threshold:
log.debug("Discarding %s - ts = %s , current ts = %s " % (name, timestamp, cur_time))
self.num_discarded_old_points += 1
else:
self.metrics[context].sample(value, sample_rate, timestamp)
def gauge(self, name, value, tags=None, hostname=None, device_name=None, timestamp=None):
self.submit_metric(name, value, 'g', tags, hostname, device_name, timestamp)
def increment(self, name, value=1, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'c', tags, hostname, device_name)
def decrement(self, name, value=-1, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'c', tags, hostname, device_name)
def rate(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, '_dd-r', tags, hostname, device_name)
def submit_count(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'ct', tags, hostname, device_name)
def count_from_counter(self, name, value, tags=None,
hostname=None, device_name=None):
self.submit_metric(name, value, 'ct-c', tags,
hostname, device_name)
def histogram(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'h', tags, hostname, device_name)
def set(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 's', tags, hostname, device_name)
def flush(self):
timestamp = time()
expiry_timestamp = timestamp - self.expiry_seconds
# Flush points and remove expired metrics. We mutate this dictionary
# while iterating so don't use an iterator.
metrics = []
for context, metric in self.metrics.items():
if metric.last_sample_time < expiry_timestamp:
log.debug("%s hasn't been submitted in %ss. Expiring." % (context, self.expiry_seconds))
del self.metrics[context]
else:
metrics += metric.flush(timestamp, self.interval)
# Log a warning regarding metrics with old timestamps being submitted
if self.num_discarded_old_points > 0:
log.warn('%s points were discarded as a result of having an old timestamp' % self.num_discarded_old_points)
self.num_discarded_old_points = 0
# Save some stats.
log.debug("received %s payloads since last flush" % self.count)
self.total_count += self.count
self.count = 0
return metrics
def get_formatter(config):
formatter = api_formatter
if config['statsd_metric_namespace']:
def metric_namespace_formatter_wrapper(metric, value, timestamp, tags,
hostname=None, device_name=None,
metric_type=None, interval=None):
metric_prefix = config['statsd_metric_namespace']
if metric_prefix[-1] != '.':
metric_prefix += '.'
return api_formatter(metric_prefix + metric, value, timestamp, tags, hostname,
device_name, metric_type, interval)
formatter = metric_namespace_formatter_wrapper
return formatter
def api_formatter(metric, value, timestamp, tags, hostname=None, device_name=None,
metric_type=None, interval=None):
return {
'metric': metric,
'points': [(timestamp, value)],
'tags': tags,
'host': hostname,
'device_name': device_name,
'type': metric_type or MetricTypes.GAUGE,
'interval':interval,
}