-
Notifications
You must be signed in to change notification settings - Fork 297
/
Copy pathtrain.py
96 lines (88 loc) · 3.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (C) 2019 Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, Yu-Gang Jiang, Fudan University
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow as tf
from p2m.utils import *
from p2m.models import GCN
from p2m.fetcher import *
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
# Set random seed
seed = 1024
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_list', 'Data/train_list.txt', 'Data list.') # training data list
flags.DEFINE_float('learning_rate', 1e-5, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 5, 'Number of epochs to train.')
flags.DEFINE_integer('hidden', 256, 'Number of units in hidden layer.') # gcn hidden layer channel
flags.DEFINE_integer('feat_dim', 963, 'Number of units in feature layer.') # image feature dim
flags.DEFINE_integer('coord_dim', 3, 'Number of units in output layer.')
flags.DEFINE_float('weight_decay', 5e-6, 'Weight decay for L2 loss.')
# Define placeholders(dict) and model
num_blocks = 3
num_supports = 2
placeholders = {
'features': tf.placeholder(tf.float32, shape=(None, 3)),
'img_inp': tf.placeholder(tf.float32, shape=(224, 224, 3)),
'labels': tf.placeholder(tf.float32, shape=(None, 6)),
'support1': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'support2': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'support3': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'faces': [tf.placeholder(tf.int32, shape=(None, 4)) for _ in range(num_blocks)], #for face loss, not used.
'edges': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks)],
'lape_idx': [tf.placeholder(tf.int32, shape=(None, 10)) for _ in range(num_blocks)], #for laplace term
'pool_idx': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks-1)] #for unpooling
}
model = GCN(placeholders, logging=True)
# Load data, initialize session
data = DataFetcher(FLAGS.data_list)
data.setDaemon(True) ####
data.start()
config=tf.ConfigProto()
#config.gpu_options.allow_growth=True
config.allow_soft_placement=True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
#model.load(sess)
# Train graph model
train_loss = open('record_train_loss.txt', 'a')
train_loss.write('Start training, lr = %f\n'%(FLAGS.learning_rate))
pkl = pickle.load(open('Data/ellipsoid/info_ellipsoid.dat', 'rb'))
feed_dict = construct_feed_dict(pkl, placeholders)
train_number = data.number
for epoch in range(FLAGS.epochs):
all_loss = np.zeros(train_number,dtype='float32')
for iters in range(train_number):
# Fetch training data
img_inp, y_train, data_id = data.fetch()
feed_dict.update({placeholders['img_inp']: img_inp})
feed_dict.update({placeholders['labels']: y_train})
# Training step
_, dists,out1,out2,out3 = sess.run([model.opt_op,model.loss,model.output1,model.output2,model.output3], feed_dict=feed_dict)
all_loss[iters] = dists
mean_loss = np.mean(all_loss[np.where(all_loss)])
if (iters+1) % 128 == 0:
print 'Epoch %d, Iteration %d'%(epoch + 1,iters + 1)
print 'Mean loss = %f, iter loss = %f, %d'%(mean_loss,dists,data.queue.qsize())
# Save model
model.save(sess)
train_loss.write('Epoch %d, loss %f\n'%(epoch+1, mean_loss))
train_loss.flush()
data.shutdown()
print 'Training Finished!'