-
Notifications
You must be signed in to change notification settings - Fork 297
/
Copy patheval_testset.py
153 lines (136 loc) · 6.42 KB
/
eval_testset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (C) 2019 Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, Yu-Gang Jiang, Fudan University
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, sys
import tensorflow as tf
from pixel2mesh.models import GCN
from pixel2mesh.fetcher import *
from pixel2mesh.cd_dist import nn_distance
sys.path.append('external')
from tf_approxmatch import approx_match, match_cost
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_list', 'Data/test_list.txt', 'Data list path.')
flags.DEFINE_float('learning_rate', 3e-5, 'Initial learning rate.')
flags.DEFINE_integer('hidden', 192, 'Number of units in hidden layer.')
flags.DEFINE_integer('feat_dim', 963, 'Number of units in perceptual feature layer.')
flags.DEFINE_integer('coord_dim', 3, 'Number of units in output layer.')
flags.DEFINE_float('weight_decay', 5e-6, 'Weight decay for L2 loss.')
# Define placeholders(dict) and model
num_blocks = 3
num_supports = 2
placeholders = {
'features': tf.placeholder(tf.float32, shape=(None, 3)), # initial 3D coordinates
'img_inp': tf.placeholder(tf.float32, shape=(224, 224, 3)), # input image to network
'labels': tf.placeholder(tf.float32, shape=(None, 6)), # ground truth (point cloud with vertex normal)
'support1': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)], # graph structure in the first block
'support2': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)], # graph structure in the second block
'support3': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)], # graph structure in the third block
'faces': [tf.placeholder(tf.int32, shape=(None, 4)) for _ in range(num_blocks)], # helper for face loss (not used)
'edges': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks)], # helper for normal loss
'lape_idx': [tf.placeholder(tf.int32, shape=(None, 10)) for _ in range(num_blocks)], # helper for laplacian regularization
'pool_idx': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks-1)] # helper for graph unpooling
}
model = GCN(placeholders, logging=True)
# Construct feed dictionary
def construct_feed_dict(pkl, placeholders):
coord = pkl[0]
pool_idx = pkl[4]
faces = pkl[5]
lape_idx = pkl[7]
edges = []
for i in range(1,4):
adj = pkl[i][1]
edges.append(adj[0])
feed_dict = dict()
feed_dict.update({placeholders['features']: coord})
feed_dict.update({placeholders['edges'][i]: edges[i] for i in range(len(edges))})
feed_dict.update({placeholders['faces'][i]: faces[i] for i in range(len(faces))})
feed_dict.update({placeholders['pool_idx'][i]: pool_idx[i] for i in range(len(pool_idx))})
feed_dict.update({placeholders['lape_idx'][i]: lape_idx[i] for i in range(len(lape_idx))})
feed_dict.update({placeholders['support1'][i]: pkl[1][i] for i in range(len(pkl[1]))})
feed_dict.update({placeholders['support2'][i]: pkl[2][i] for i in range(len(pkl[2]))})
feed_dict.update({placeholders['support3'][i]: pkl[3][i] for i in range(len(pkl[3]))})
return feed_dict
def f_score(label, predict, dist_label, dist_pred, threshold):
num_label = label.shape[0]
num_predict = predict.shape[0]
f_scores = []
for i in range(len(threshold)):
num = len(np.where(dist_label <= threshold[i])[0])
recall = 100.0 * num / num_label
num = len(np.where(dist_pred <= threshold[i])[0])
precision = 100.0 * num / num_predict
f_scores.append((2*precision*recall)/(precision+recall+1e-8))
return np.array(f_scores)
# Load data
data = DataFetcher(FLAGS.data_list)
data.setDaemon(True) ####
data.start()
train_number = data.number
# Initialize session
# xyz1:dataset_points * 3, xyz2:query_points * 3
xyz1=tf.placeholder(tf.float32,shape=(None, 3))
xyz2=tf.placeholder(tf.float32,shape=(None, 3))
# chamfer distance
dist1,idx1,dist2,idx2 = nn_distance(xyz1, xyz2)
# earth mover distance, notice that emd_dist return the sum of all distance
match = approx_match(xyz1, xyz2)
emd_dist = match_cost(xyz1, xyz2, match)
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
config.allow_soft_placement=True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
model.load(sess)
# Construct feed dictionary
pkl = pickle.load(open('Data/ellipsoid/info_ellipsoid.dat', 'rb'))
feed_dict = construct_feed_dict(pkl, placeholders)
###
class_name = {'02828884':'bench','03001627':'chair','03636649':'lamp','03691459':'speaker','04090263':'firearm','04379243':'table','04530566':'watercraft','02691156':'plane','02933112':'cabinet','02958343':'car','03211117':'monitor','04256520':'couch','04401088':'cellphone'}
model_number = {i:0 for i in class_name}
sum_f = {i:0 for i in class_name}
sum_cd = {i:0 for i in class_name}
sum_emd = {i:0 for i in class_name}
for iters in range(train_number):
# Fetch training data
img_inp, label, model_id = data.fetch()
feed_dict.update({placeholders['img_inp']: img_inp})
feed_dict.update({placeholders['labels']: label})
# Training step
predict = sess.run(model.output3, feed_dict=feed_dict)
label = label[:, :3]
d1,i1,d2,i2,emd = sess.run([dist1,idx1,dist2,idx2, emd_dist], feed_dict={xyz1:label,xyz2:predict})
cd = np.mean(d1) + np.mean(d2)
class_id = model_id.split('_')[0]
model_number[class_id] += 1.0
sum_f[class_id] += f_score(label,predict,d1,d2,[0.0001, 0.0002])
sum_cd[class_id] += cd # cd is the mean of all distance
sum_emd[class_id] += emd[0] # emd is the sum of all distance
print 'processed number', iters
log = open('record_evaluation.txt', 'a')
for item in model_number:
number = model_number[item] + 1e-8
f = sum_f[item] / number
cd = (sum_cd[item] / number) * 1000 #cd is the mean of all distance, cd is L2
emd = (sum_emd[item] / number) * 0.01 #emd is the sum of all distance, emd is L1
print class_name[item], int(number), f, cd, emd
print >> log, class_name[item], int(number), f, cd, emd
log.close()
sess.close()
data.shutdown()
print 'Testing Finished!'