-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.cpp
1136 lines (964 loc) · 49 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2020-2024 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
// This sample demonstrates several ways of rendering transparent objects
// without requiring them to be sorted in advance, including both
// algorithms that produce ground-truth images if given enough memory, and
// an algorithm that produces approximate results.
// For more information on these techniques, run the sample, see
// oitScene.frag.glsl,or read the documentation that comes with this sample.
// Here's how the C++ code is organized:
// oit.h: Main Sample application structure with all functions.
// oitRender.cpp: Main OIT-specific rendering functions.
// oit.cpp: Main OIT-specific resource creation functions.
// oitGui.cpp: GUI for the application.
// utilities_vk.h: Helper functions that can exist without a sample.
// main.cpp: All other functions not specific to OIT.
#pragma warning(disable : 26812) // Disable the warning about Vulkan's enumerations being untyped in VS2019.
#if defined(_WIN32)
// Include Windows before GLFW3 to fix some errors with std::min and std::max
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif // #ifndef NOMINMAX
#include <Windows.h>
#endif
#ifndef GLFW_INCLUDE_VULKAN
#define GLFW_INCLUDE_VULKAN
#endif
#include <GLFW/glfw3.h>
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <random>
#include <set>
#include <stdexcept>
#include <vector>
#define IMGUI_DEFINE_MATH_OPERATORS
#include <imgui/backends/imgui_vk_extra.h>
#include <imgui/imgui_helper.h>
#include <nvpwindow.hpp>
#include <nvh/cameracontrol.hpp>
#include <nvh/fileoperations.hpp>
#include <nvh/misc.hpp>
#include <nvh/nvprint.hpp>
#include <nvh/timesampler.hpp>
#include <nvvk/commands_vk.hpp>
#include <nvvk/descriptorsets_vk.hpp>
#include <nvvk/error_vk.hpp>
#include <nvvk/extensions_vk.hpp>
#include <nvvk/images_vk.hpp>
#include <nvvk/memorymanagement_vk.hpp>
#include <nvvk/pipeline_vk.hpp>
#include <nvvk/profiler_vk.hpp>
#include <nvvk/shadermodulemanager_vk.hpp>
#include <nvvk/shaders_vk.hpp>
#include <nvvk/swapchain_vk.hpp>
#include "oit.h"
// Application constants
const int GRID_SIZE = 16;
const float GLOBAL_SCALE = 8.0f;
///////////////////////////////////////////////////////////////////////////////
// Callbacks //
///////////////////////////////////////////////////////////////////////////////
void Sample::resize(int width, int height)
{
assert(width == m_windowState.m_swapSize[0]);
assert(height == m_windowState.m_swapSize[1]);
updateRendererImmediate(true, false);
}
bool Sample::mouse_pos(int x, int y)
{
return ImGuiH::mouse_pos(x, y);
}
bool Sample::mouse_button(int button, int action)
{
return ImGuiH::mouse_button(button, action);
}
bool Sample::mouse_wheel(int wheel)
{
return ImGuiH::mouse_wheel(wheel);
}
bool Sample::key_char(int key)
{
return ImGuiH::key_char(key);
}
bool Sample::key_button(int button, int action, int mods)
{
return ImGuiH::key_button(button, action, mods);
}
///////////////////////////////////////////////////////////////////////////////
// Object Creation, Destruction, and Recreation //
///////////////////////////////////////////////////////////////////////////////
bool Sample::begin()
{
m_profilerPrint = true;
m_timeInTitle = true;
// Initialize Dear ImGui (we'll call InitVK later)
ImGuiH::Init(m_windowState.m_winSize[0], m_windowState.m_winSize[1], this);
ImGui::GetIO().IniFilename = nullptr; // Don't create a .ini file for storing data across application launches
// Initialize Dear ImGui's Vulkan renderer:
m_debug.setup(m_context);
createGUIRenderPass();
ImGui::InitVK(m_context, m_context.m_physicalDevice, m_context.m_queueGCT, m_context.m_queueGCT.familyIndex, m_renderPassGUI);
// Initialize all Vulkan components that will be constant throughout the application lifecycle.
// Components that can change are handled by updateRendererFromState.
m_ringFences.init(m_context);
m_ringCmdPool.init(m_context, m_context.m_queueGCT.familyIndex, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT);
m_submission.init(m_context.m_queueGCT.queue);
createTextureSampler();
m_allocatorDma.init(m_context.m_device, m_context.m_physicalDevice);
// Configure shader system (note that this also creates shader modules as we add them)
{
// Initialize shader system (this keeps track of shaders so that you can reload all of them at once):
m_shaderModuleManager.init(m_context);
// Add search paths for files and includes
m_shaderModuleManager.addDirectory("GLSL_" PROJECT_NAME); // For when running in the install directory
m_shaderModuleManager.addDirectory(".");
m_shaderModuleManager.addDirectory(NVPSystem::exePath() + PROJECT_RELDIRECTORY);
m_shaderModuleManager.addDirectory(NVPSystem::exePath() + PROJECT_RELDIRECTORY + "..");
m_shaderModuleManager.addDirectory(".."); // for when working directory in Debug is $(ProjectDir)
m_shaderModuleManager.addDirectory("../.."); // for when using $(TargetDir)
m_shaderModuleManager.addDirectory("../shipped/" PROJECT_NAME); // For when running from the bin_x64 directory on Linux
m_shaderModuleManager.addDirectory("../../shipped/" PROJECT_NAME); // for when using $(TargetDir)
m_shaderModuleManager.addDirectory("../../../shipped/" PROJECT_NAME); // for when using $(TargetDir) and build_all
// We have to manually set up paths to files we could include.
m_shaderModuleManager.registerInclude("common.h");
m_shaderModuleManager.registerInclude("oitColorDepthDefines.glsl");
m_shaderModuleManager.registerInclude("oitCompositeDefines.glsl");
m_shaderModuleManager.registerInclude("shaderCommon.glsl");
}
// Call updateRendererImmediate to set up the rest of the renderer with the initial swapchain size:
{
updateRendererImmediate(true, true);
}
// Register enumerations with the Dear ImGui registry
{
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_SIMPLE, "simple");
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_LINKEDLIST, "linkedlist");
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_LOOP, "loop32 two pass");
if(m_context.hasDeviceExtension(VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME))
{
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_LOOP64, "loop64");
}
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_SPINLOCK, "spinlock");
if(m_context.hasDeviceExtension(VK_EXT_FRAGMENT_SHADER_INTERLOCK_EXTENSION_NAME))
{
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_INTERLOCK, "interlock");
}
m_imGuiRegistry.enumAdd(GUI_ALGORITHM, OIT_WEIGHTED, "weighted blend");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 1, "1");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 2, "2");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 4, "4");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 8, "8");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 16, "16");
m_imGuiRegistry.enumAdd(GUI_OITSAMPLES, 32, "32");
m_imGuiRegistry.enumAdd(GUI_AA, AA_NONE, "none");
m_imGuiRegistry.enumAdd(GUI_AA, AA_MSAA_4X, "msaa 4x pixel-shading");
m_imGuiRegistry.enumAdd(GUI_AA, AA_SSAA_4X, "msaa 4x sample-shading");
m_imGuiRegistry.enumAdd(GUI_AA, AA_SUPER_4X, "super 4x");
m_imGuiRegistry.enumAdd(GUI_AA, AA_MSAA_8X, "msaa 8x pixel-shading");
m_imGuiRegistry.enumAdd(GUI_AA, AA_SSAA_8X, "msaa 8x sample-shading");
}
// Initialize camera
{
m_cameraControl.m_sceneOrbit = glm::vec3(0.0f);
m_cameraControl.m_sceneDimension = static_cast<float>(GRID_SIZE) * 0.25f;
m_cameraControl.m_viewMatrix =
glm::lookAt(m_cameraControl.m_sceneOrbit - (glm::vec3(0, 0, -0.6f) * m_cameraControl.m_sceneDimension * 5.0f),
m_cameraControl.m_sceneOrbit, vec3(0.0f, 1.0f, 0.0f));
}
// Initialize the UBO
m_sceneUbo.alphaMin = 0.2f;
m_sceneUbo.alphaWidth = 0.3f;
m_frame = 0;
m_lastState = m_state;
return true; // Initialization succeeded
}
void Sample::updateRendererImmediate(bool swapchainSizeChanged, bool forceRebuildAll)
{
VkCommandBuffer cmd = createTempCmdBuffer();
cmdUpdateRendererFromState(cmd, swapchainSizeChanged, forceRebuildAll);
vkEndCommandBuffer(cmd);
m_submission.enqueue(cmd);
submissionExecute();
vkDeviceWaitIdle(m_context);
m_ringFences.reset();
m_ringCmdPool.reset();
}
void Sample::cmdUpdateRendererFromState(VkCommandBuffer cmdBuffer, bool swapchainSizeChanged, bool forceRebuildAll)
{
m_state.recomputeAntialiasingSettings();
// Determine what needs to be rebuilt
swapchainSizeChanged |= forceRebuildAll;
const bool vsyncChanged = (m_lastVsync != getVsync()) || forceRebuildAll;
const bool shadersNeedUpdate = (m_state.algorithm != m_lastState.algorithm) //
|| (m_state.oitLayers != m_lastState.oitLayers) //
|| (m_state.tailBlend != m_lastState.tailBlend) //
|| (m_state.interlockIsOrdered != m_lastState.interlockIsOrdered) //
|| (m_state.msaa != m_lastState.msaa) //
|| (m_state.sampleShading != m_lastState.sampleShading) //
|| forceRebuildAll;
const bool sceneNeedsReinit = (m_state.numObjects != m_lastState.numObjects) //
|| (m_state.scaleWidth != m_lastState.scaleWidth) //
|| (m_state.scaleMin != m_lastState.scaleMin) //
|| (m_state.subdiv != m_lastState.subdiv) //
|| forceRebuildAll;
const bool imagesNeedReinit = (m_state.supersample != m_lastState.supersample) //
|| (m_state.msaa != m_lastState.msaa) //
|| (m_state.algorithm != m_lastState.algorithm) //
|| (m_state.sampleShading != m_lastState.sampleShading) //
|| (m_state.oitLayers != m_lastState.oitLayers) //
|| ((m_state.algorithm == OIT_LINKEDLIST)
&& (m_state.linkedListAllocatedPerElement != m_lastState.linkedListAllocatedPerElement)) //
|| swapchainSizeChanged //
|| forceRebuildAll;
const bool descriptorSetsNeedReinit = ((m_state.algorithm == OIT_LOOP64) && (m_lastState.algorithm != OIT_LOOP64)) //
|| ((m_state.algorithm != OIT_LOOP64) && (m_lastState.algorithm == OIT_LOOP64)) //
|| forceRebuildAll;
const bool framebuffersAndDescriptorsNeedReinit = imagesNeedReinit //
|| vsyncChanged //
|| forceRebuildAll;
const bool renderPassesNeedReinit = (m_state.msaa != m_lastState.msaa) //
|| forceRebuildAll;
const bool pipelinesNeedReinit = (m_state.algorithm != m_lastState.algorithm) //
|| shadersNeedUpdate || imagesNeedReinit;
const bool anythingChanged = shadersNeedUpdate || sceneNeedsReinit || imagesNeedReinit || descriptorSetsNeedReinit
|| framebuffersAndDescriptorsNeedReinit || renderPassesNeedReinit;
if(anythingChanged)
{
vkDeviceWaitIdle(m_context);
LOGI("framebuffer: %d x %d (%d msaa)\n", m_windowState.m_swapSize[0], m_windowState.m_swapSize[1], m_state.msaa);
if(vsyncChanged || swapchainSizeChanged)
{
m_swapChain.cmdUpdateBarriers(cmdBuffer);
createUniformBuffers();
}
if(sceneNeedsReinit)
{
initScene(cmdBuffer);
}
if(imagesNeedReinit)
{
createFrameImages(cmdBuffer);
}
if(descriptorSetsNeedReinit)
{
createDescriptorSets();
}
if(renderPassesNeedReinit)
{
createNonGUIRenderPasses();
}
if(framebuffersAndDescriptorsNeedReinit)
{
updateAllDescriptorSets();
createFramebuffers();
}
if(shadersNeedUpdate)
{
createOrReloadShaderModules();
}
if(pipelinesNeedReinit)
{
createGraphicsPipelines();
}
setUpViewportsAndScissors();
m_lastVsync = getVsync();
}
}
void Sample::end()
{
vkDeviceWaitIdle(m_context);
m_profilerVK.deinit();
ImGui::ShutdownVK();
ImGui::DestroyContext();
// From updateRendererFromState
destroyGraphicsPipelines();
m_shaderModuleManager.deinit();
destroyFramebuffers();
destroyNonGUIRenderPasses();
destroyGUIRenderPass();
destroyDescriptorSets();
destroyFrameImages();
destroyScene();
destroyUniformBuffers();
// From begin
m_allocatorDma.deinit();
destroyTextureSampler();
m_ringCmdPool.deinit();
m_ringFences.deinit();
}
void Sample::destroyTextureSampler()
{
vkDestroySampler(m_context, m_pointSampler, nullptr);
}
void Sample::createTextureSampler()
{
// Create a point sampler using base Vulkan
VkSamplerCreateInfo samplerInfo = {VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO};
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.anisotropyEnable = VK_FALSE;
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
samplerInfo.unnormalizedCoordinates = VK_FALSE;
samplerInfo.compareEnable = VK_FALSE;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
NVVK_CHECK(vkCreateSampler(m_context, &samplerInfo, nullptr, &m_pointSampler));
}
void Sample::destroyUniformBuffers()
{
for(nvvk::Buffer& uniformBuffer : m_uniformBuffers)
{
m_allocatorDma.destroy(uniformBuffer);
}
}
void Sample::createUniformBuffers()
{
destroyUniformBuffers();
VkDeviceSize bufferSize = sizeof(SceneData);
m_uniformBuffers.resize(m_swapChain.getImageCount());
for(uint32_t i = 0; i < m_swapChain.getImageCount(); i++)
{
m_uniformBuffers[i] = m_allocatorDma.createBuffer(bufferSize, // Buffer size
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, // Usage
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT // Memory flags
);
}
}
void Sample::destroyScene()
{
m_allocatorDma.destroy(m_indexBuffer);
m_allocatorDma.destroy(m_vertexBuffer);
}
void Sample::initScene(VkCommandBuffer commandBuffer)
{
destroyScene();
// A Mesh consists of vectors of vertices, triangle list indices, and lines.
// It assumes that its type contains variables, at least, each vertex's position, normal, and color.
// (We'll ignore lines when converting this to a vertex and index buffer.)
nvh::geometry::Mesh<Vertex> completeMesh;
// We'll use C++11-style random number generation here, but you could also do this
// with rand() and srand().
std::default_random_engine rnd(3625); // Fixed seed
std::uniform_real_distribution<float> uniformDist;
for(uint32_t i = 0; i < m_state.numObjects; i++)
{
// Generate a random position in [-GLOBAL_SCALE/2, GLOBAL_SCALE/2)^3
glm::vec3 center(uniformDist(rnd), uniformDist(rnd), uniformDist(rnd));
center = (center - glm::vec3(0.5)) * GLOBAL_SCALE;
// Generate a random radius
float radius = GLOBAL_SCALE * 0.9f / GRID_SIZE;
radius *= uniformDist(rnd) * m_state.scaleWidth + m_state.scaleMin;
// Our vectors are vertical, so this represents a scale followed by a translation:
glm::mat4 matrix = glm::translate(glm::mat4(1.f), center) * glm::scale(glm::mat4(1.f), glm::vec3(radius));
// Add a sphere to the complete mesh, and then color it:
const uint32_t vtxStart = completeMesh.getVerticesCount(); // First vertex to color
nvh::geometry::Sphere<Vertex>::add(completeMesh, matrix, m_state.subdiv * 2, m_state.subdiv);
if(i == 0)
{
m_objectTriangleIndices = completeMesh.getTriangleIndicesCount();
}
// Color in unpremultiplied linear space
glm::vec4 color(uniformDist(rnd), uniformDist(rnd), uniformDist(rnd), uniformDist(rnd));
color.x *= color.x;
color.y *= color.y;
color.z *= color.z;
uint32_t vtxEnd = completeMesh.getVerticesCount();
for(uint32_t v = vtxStart; v < vtxEnd; v++)
{
completeMesh.m_vertices[v].color = color;
}
}
// Count the total number of triangle indices
m_sceneTriangleIndices = completeMesh.getTriangleIndicesCount();
// Create the vertex and index buffers and synchronously upload them to the
// GPU, waiting for them to finish uploading. Note that applications may wish
// to implement asynchronous uploads, which you can see how to do in the
// vk_async_resources sample.
nvvk::StagingMemoryManager scopedTransfer(m_allocatorDma.getMemoryAllocator());
{
// When this goes out of scope, it'll synchronously perform all of the copy operations.
// 'scopedTransfer' can then safely go out of scope after it.
nvvk::ScopeCommandBuffer cmd(m_context, m_context.m_queueT, m_context.m_queueT);
// Create vertex buffer
VkDeviceSize vtxBufferSize = static_cast<VkDeviceSize>(completeMesh.getVerticesSize());
m_vertexBuffer = m_allocatorDma.createBuffer(vtxBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
scopedTransfer.cmdToBuffer(cmd, m_vertexBuffer.buffer, 0, vtxBufferSize, completeMesh.m_vertices.data());
m_debug.setObjectName(m_vertexBuffer.buffer, "m_vertexBuffer");
VkDeviceSize idxBufferSize = static_cast<VkDeviceSize>(completeMesh.getTriangleIndicesSize());
m_indexBuffer = m_allocatorDma.createBuffer(idxBufferSize, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
scopedTransfer.cmdToBuffer(cmd, m_indexBuffer.buffer, 0, idxBufferSize, completeMesh.m_indicesTriangles.data());
m_debug.setObjectName(m_indexBuffer.buffer, "m_indexBuffer");
}
}
void Sample::destroyFramebuffers()
{
vkDestroyFramebuffer(m_context, m_mainColorDepthFramebuffer, nullptr);
m_mainColorDepthFramebuffer = nullptr;
vkDestroyFramebuffer(m_context, m_guiFramebuffer, nullptr);
m_guiFramebuffer = nullptr;
if(m_weightedFramebuffer != nullptr)
{
vkDestroyFramebuffer(m_context, m_weightedFramebuffer, nullptr);
m_weightedFramebuffer = nullptr;
}
}
void Sample::createFramebuffers()
{
destroyFramebuffers();
// Color + depth offscreen framebuffer
{
std::array<VkImageView, 2> attachments = {m_colorImage.view, m_depthImage.view};
VkFramebufferCreateInfo fbInfo = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO};
fbInfo.renderPass = m_renderPassColorDepthClear;
fbInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
fbInfo.pAttachments = attachments.data();
fbInfo.width = m_colorImage.c_width;
fbInfo.height = m_colorImage.c_height;
fbInfo.layers = 1;
NVVK_CHECK(vkCreateFramebuffer(m_context, &fbInfo, NULL, &m_mainColorDepthFramebuffer));
m_debug.setObjectName(m_mainColorDepthFramebuffer, "m_mainColorDepthFramebuffer");
}
// Weighted color + weighted reveal framebuffer (for Weighted, Blended
// Order-Independent Transparency). See the render pass description for more info.
if(m_state.algorithm == OIT_WEIGHTED)
{
std::array<VkImageView, 4> attachments = {m_oitWeightedColorImage.view, //
m_oitWeightedRevealImage.view, //
m_colorImage.view, //
m_depthImage.view};
VkFramebufferCreateInfo framebufferInfo = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO};
framebufferInfo.renderPass = m_renderPassWeighted;
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
framebufferInfo.pAttachments = attachments.data();
framebufferInfo.width = m_oitWeightedColorImage.c_width;
framebufferInfo.height = m_oitWeightedColorImage.c_height;
framebufferInfo.layers = 1;
NVVK_CHECK(vkCreateFramebuffer(m_context, &framebufferInfo, nullptr, &m_weightedFramebuffer));
m_debug.setObjectName(m_weightedFramebuffer, "m_weightedColorRevealFramebuffer");
}
// ui related
{
VkImageView uiTarget = m_guiCompositeImage.view;
// Create framebuffers
VkImageView bindInfos[1];
bindInfos[0] = uiTarget;
VkFramebufferCreateInfo fbInfo = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO};
fbInfo.attachmentCount = NV_ARRAY_SIZE(bindInfos);
fbInfo.pAttachments = bindInfos;
fbInfo.width = m_windowState.m_swapSize[0];
fbInfo.height = m_windowState.m_swapSize[1];
fbInfo.layers = 1;
fbInfo.renderPass = m_renderPassGUI;
NVVK_CHECK(vkCreateFramebuffer(m_context, &fbInfo, NULL, &m_guiFramebuffer));
}
}
void Sample::setUpViewportsAndScissors()
{
m_scissorGUI = {0}; // Zero-initialize
m_scissorGUI.extent.width = m_windowState.m_swapSize[0];
m_scissorGUI.extent.height = m_windowState.m_swapSize[1];
m_viewportGUI = {0}; // Zero-initialize
m_viewportGUI.width = static_cast<float>(m_scissorGUI.extent.width);
m_viewportGUI.height = static_cast<float>(m_scissorGUI.extent.height);
m_viewportGUI.minDepth = 0.0f;
m_viewportGUI.maxDepth = 1.0f;
}
void Sample::createOrReloadShaderModule(nvvk::ShaderModuleID& shaderModule,
VkShaderStageFlags shaderStage,
const std::string& filename,
const std::string& prepend)
{
if(shaderModule.isValid())
{
// Reload and recompile this module from source.
m_shaderModuleManager.reloadModule(shaderModule);
}
else
{
// Register and compile the shader module with the shader module manager.
shaderModule = m_shaderModuleManager.createShaderModule(shaderStage, filename, prepend);
}
assert(shaderModule.isValid());
#ifdef _DEBUG
std::string generatedShaderName = filename + " " + prepend;
m_debug.setObjectName(m_shaderModuleManager.get(shaderModule), generatedShaderName.c_str());
#endif // #if _DEBUG
}
void Sample::destroyGraphicsPipeline(VkPipeline& pipeline)
{
if(pipeline != nullptr)
{
vkDestroyPipeline(m_context, pipeline, nullptr);
pipeline = nullptr;
}
}
VkPipeline Sample::createGraphicsPipeline(const nvvk::ShaderModuleID& vertShaderModuleID,
const nvvk::ShaderModuleID& fragShaderModuleID,
BlendMode blendMode,
bool usesVertexInput,
bool isDoubleSided,
VkRenderPass renderPass,
uint32_t subpass)
{
VkShaderModule vertShaderModule = m_shaderModuleManager.get(vertShaderModuleID);
VkShaderModule fragShaderModule = m_shaderModuleManager.get(fragShaderModuleID);
nvvk::GraphicsPipelineGeneratorCombined pipelineState(m_context, m_descriptorInfo.getPipeLayout(), renderPass);
pipelineState.addShader(vertShaderModule, // Shader module
VK_SHADER_STAGE_VERTEX_BIT // Stage
);
pipelineState.addShader(fragShaderModule, // Shader module
VK_SHADER_STAGE_FRAGMENT_BIT // Stage
);
if(usesVertexInput)
{
// Vertex input layout
VkVertexInputBindingDescription bindingDescription = Vertex::getBindingDescription();
auto attributes = Vertex::getAttributeDescriptions();
pipelineState.addBindingDescription(bindingDescription);
for(const auto& attribute : attributes)
{
pipelineState.addAttributeDescription(attribute);
}
}
pipelineState.inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkViewport viewport = {};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(m_colorImage.c_width);
viewport.height = static_cast<float>(m_colorImage.c_height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor = {};
scissor.offset = {0, 0};
scissor.extent.width = m_colorImage.c_width;
scissor.extent.height = m_colorImage.c_height;
pipelineState.clearDynamicStateEnables();
pipelineState.setViewportsCount(1);
pipelineState.setViewport(0, viewport);
pipelineState.setScissorsCount(1);
pipelineState.setScissor(0, scissor);
// Enable backface culling
pipelineState.rasterizationState.cullMode = (isDoubleSided ? VK_CULL_MODE_NONE : VK_CULL_MODE_BACK_BIT);
pipelineState.rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
pipelineState.rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
pipelineState.rasterizationState.lineWidth = 1.f;
pipelineState.rasterizationState.depthBiasEnable = false;
pipelineState.rasterizationState.depthBiasConstantFactor = 0.f;
pipelineState.rasterizationState.depthBiasSlopeFactor = 0.f;
pipelineState.multisampleState.rasterizationSamples = (static_cast<VkSampleCountFlagBits>(m_state.msaa));
pipelineState.depthStencilState.depthBoundsTestEnable = false;
const VkCompareOp compareOp = VK_COMPARE_OP_LESS;
const VkColorComponentFlags allBits =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
switch(blendMode)
{
case BlendMode::NONE:
// Test and write to depth
pipelineState.depthStencilState.depthTestEnable = true;
pipelineState.depthStencilState.depthWriteEnable = true;
pipelineState.depthStencilState.depthCompareOp = compareOp;
pipelineState.setBlendAttachmentState(0, // Attachment
nvvk::GraphicsPipelineState::makePipelineColorBlendAttachmentState()); // Disable blending
break;
case BlendMode::PREMULTIPLIED:
// Test but don't write to depth
pipelineState.depthStencilState.depthTestEnable = true;
pipelineState.depthStencilState.depthWriteEnable = false;
pipelineState.depthStencilState.depthCompareOp = compareOp;
pipelineState.setBlendAttachmentState(0, // Attachment
nvvk::GraphicsPipelineState::makePipelineColorBlendAttachmentState(
allBits, VK_TRUE, //
VK_BLEND_FACTOR_ONE, // Source color blend factor
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // Destination color blend factor
VK_BLEND_OP_ADD, // Color blend operation
VK_BLEND_FACTOR_ONE, // Source alpha blend factor
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // Destination alpha blend factor
VK_BLEND_OP_ADD)); // Alpha blend operation
break;
case BlendMode::WEIGHTED_COLOR:
// Test but don't write to depth
pipelineState.depthStencilState.depthTestEnable = true;
pipelineState.depthStencilState.depthWriteEnable = false;
pipelineState.depthStencilState.depthCompareOp = compareOp;
pipelineState.setBlendAttachmentCount(2);
pipelineState.setBlendAttachmentState(0, // Attachment
nvvk::GraphicsPipelineState::makePipelineColorBlendAttachmentState(
allBits, VK_TRUE, //
VK_BLEND_FACTOR_ONE, // Source color blend factor
VK_BLEND_FACTOR_ONE, // Destination color blend factor
VK_BLEND_OP_ADD, // Color blend operation
VK_BLEND_FACTOR_ONE, // Source alpha blend factor
VK_BLEND_FACTOR_ONE, // Destination alpha blend factor
VK_BLEND_OP_ADD)); // Alpha blend operation
pipelineState.setBlendAttachmentState(1, // Attachment
nvvk::GraphicsPipelineState::makePipelineColorBlendAttachmentState(
allBits, VK_TRUE, //
VK_BLEND_FACTOR_ZERO, // Source color blend factor
VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, // Destination color blend factor
VK_BLEND_OP_ADD, // Color blend operation
VK_BLEND_FACTOR_ZERO, // Source alpha blend factor
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // Destination alpha blend factor
VK_BLEND_OP_ADD)); // Alpha blend operation
break;
case BlendMode::WEIGHTED_COMPOSITE:
// Test but don't write to depth
pipelineState.depthStencilState.depthTestEnable = true;
pipelineState.depthStencilState.depthWriteEnable = false;
pipelineState.depthStencilState.depthCompareOp = compareOp;
pipelineState.setBlendAttachmentState(0, // Attachment
nvvk::GraphicsPipelineState::makePipelineColorBlendAttachmentState(
allBits, VK_TRUE, //
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // Source color blend factor
VK_BLEND_FACTOR_SRC_ALPHA, // Destination color blend factor
VK_BLEND_OP_ADD, // Color blend operation
VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // Source alpha blend factor
VK_BLEND_FACTOR_SRC_ALPHA, // Destination alpha blend factor
VK_BLEND_OP_ADD)); // Alpha blend operation
break;
default:
assert(!"Blend mode configuration not implemented!");
break;
}
pipelineState.setRenderPass(renderPass);
pipelineState.createInfo.subpass = subpass;
VkPipeline pipeline = pipelineState.createPipeline();
if(pipeline == VK_NULL_HANDLE)
{
throw std::runtime_error("Failed to create graphics pipeline!");
}
#ifdef _DEBUG
// Generate a name for the graphics pipeline
std::string generatedPipelineName = std::to_string(vertShaderModuleID.m_value) + " " //
+ std::to_string(fragShaderModuleID.m_value) + " " //
+ std::to_string(static_cast<uint32_t>(blendMode)) + " " //
+ std::to_string(usesVertexInput) + " " //
+ std::to_string(reinterpret_cast<uint64_t>(renderPass)) + " " //
+ std::to_string(subpass);
m_debug.setObjectName(pipeline, generatedPipelineName.c_str());
#endif
return pipeline;
}
VkCommandBuffer Sample::createTempCmdBuffer()
{
VkCommandBuffer cmd = m_ringCmdPool.createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
VkCommandBufferBeginInfo beginInfo = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO};
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
NVVK_CHECK(vkBeginCommandBuffer(cmd, &beginInfo));
return cmd;
}
///////////////////////////////////////////////////////////////////////////////
// Main rendering logic //
///////////////////////////////////////////////////////////////////////////////
void Sample::updateUniformBuffer(uint32_t currentImage, double time)
{
const uint32_t width = m_colorImage.c_width;
const uint32_t height = m_colorImage.c_height;
const float aspectRatio = static_cast<float>(width) / static_cast<float>(height);
glm::mat4 projection = glm::perspectiveRH_ZO(glm::radians(45.0f), aspectRatio, 0.01f, 50.0f);
projection[1][1] *= -1;
glm::mat4 view = m_cameraControl.m_viewMatrix;
m_sceneUbo.projViewMatrix = projection * view;
m_sceneUbo.viewMatrix = view;
m_sceneUbo.viewMatrixInverseTranspose = glm::transpose(glm::inverse(view));
m_sceneUbo.viewport = glm::ivec3(width, height, width * height);
void* data = m_allocatorDma.map(m_uniformBuffers[currentImage]);
memcpy(data, &m_sceneUbo, sizeof(m_sceneUbo));
m_allocatorDma.unmap(m_uniformBuffers[currentImage]);
}
void Sample::copyOffscreenToBackBuffer(int winWidth, int winHeight, ImDrawData* imguiDrawData)
{
// This function resolves + scales m_colorImage into m_guiCompositeImage, draws the Dear ImGui GUI onto
// m_guiCompositeImage, and then blits m_guiCompositeImage onto the backbuffer. Because m_colorImage is
// generally a different format (B8G8R8A8_SRGB) than m_guiCompositeImage (R8G8B8A8) (which in turn is required by
// linear-space rendering) and sometimes a different size xor has different MSAA samples/pixel, the worst case
// (MSAA resolve + change of format) takes two steps.
// Note that we could do this in one step, and further customize the filters used, using a custom kernel.
// Finally, Vulkan allows us to access the swapchain images themselves. However, while a previous version of this
// sample did that, we now render the GUI to intermediate offscreen image, as this avoids potential problems with
// swapchain recreation, and may be more familiar to developers used to OpenGL applications.
//
// As a result of the differences between MSAA resolve + downscaling, there are a few cases to handle.
// Here's a high-level node graph overview of this function:
//
// MSAA? Downsample? Neither?
// m_colorImage m_colorImage m_colorImage
// | | |
// vkCmdResolveImage vkCmdBlitImage |
// V V |
// m_downsampleImage .-----------*
// | V
// vkCmdCopyImage (reinterpret data)
// V
// m_guiCompositeImage
// |
// render Dear ImGui GUI
// V
// Swapchain
// Start a separate command buffer for this function.
VkCommandBuffer cmdBuffer = createTempCmdBuffer();
nvh::Profiler::SectionID sec = m_profilerVK.beginSection("CopyOffscreenToBackBuffer", cmdBuffer);
// Prepare to transfer from m_colorImage; check its initial state for soundness
assert(m_colorImage.currentLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
assert(m_colorImage.currentAccesses == (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT));
m_colorImage.transitionTo(cmdBuffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT);
// Tracks the image that will be passed to vkCmdCopyImage
// These are the defaults if no resolve or downsample is required.
VkImage copySrcImage = m_colorImage.image.image;
VkImageLayout copySrcLayout = m_colorImage.currentLayout;
// If resolve or downsample required
if(m_state.msaa != 1 || m_state.supersample != 1)
{
// Prepare to transfer data to m_downsampleImage
m_downsampleImage.transitionTo(cmdBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT);
// MSAA branch
if(m_state.msaa != 1)
{
// Resolve the MSAA image m_colorImage to m_downsampleImage
VkImageResolve region = {0}; // Zero-initialize
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = 1;
region.dstSubresource = region.srcSubresource;
region.extent = {m_colorImage.c_width, m_colorImage.c_height, 1};
vkCmdResolveImage(cmdBuffer, // Command buffer
m_colorImage.image.image, // Source image
m_colorImage.currentLayout, // Source image layout
m_downsampleImage.image.image, // Destination image
m_downsampleImage.currentLayout, // Destination image layout
1, // Number of regions
®ion); // Regions
}
else
{
// Downsample m_colorImage to m_downsampleTargeImage
VkImageBlit region = {0}; // Zero-initialize
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = 1;
region.dstSubresource = region.srcSubresource;
region.srcOffsets[1] = {static_cast<int32_t>(m_colorImage.c_width), //
static_cast<int32_t>(m_colorImage.c_height), //
1};
region.dstOffsets[1] = {static_cast<int32_t>(m_downsampleImage.c_width), //
static_cast<int32_t>(m_downsampleImage.c_height), //
1};
vkCmdBlitImage(cmdBuffer, // Command buffer
m_colorImage.image.image, // Source image
m_colorImage.currentLayout, // Source image
m_downsampleImage.image.image, // Destination image
m_downsampleImage.currentLayout, // Destination image layout
1, // Number of regions
®ion, // Regions
VK_FILTER_LINEAR); // Use tent filtering (= box filtering in this case)
}
// Prepare to transfer data from m_downsampleImage, and set copySrcImage and copySrcLayout.
m_downsampleImage.transitionTo(cmdBuffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT);
copySrcImage = m_downsampleImage.image.image;
copySrcLayout = m_downsampleImage.currentLayout;
}
// Prepare to transfer data to m_guiCompositeImage
m_guiCompositeImage.transitionTo(cmdBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT);
// Now, we want to copy data from copySrcImage to m_guiCompositeImage instead of blitting it, since blitting will try
// to convert the sRGB data and store it in linear format, which isn't what we want.
{
VkImageCopy region = {0};
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = 1;
region.dstSubresource = region.srcSubresource;
region.extent = {m_guiCompositeImage.c_width, m_guiCompositeImage.c_height, 1};
vkCmdCopyImage(cmdBuffer, // Command buffer
copySrcImage, // Source image
copySrcLayout, // Source image layout
m_guiCompositeImage.image.image, // Destination image
m_guiCompositeImage.currentLayout, // Destination image layout
1, // Number of regions
®ion); // Regions
}
// Now, render the GUI.
// If draw data exists, we begin a new render pass and call ImGui::RenderDrawDataVK.
// This render pass takes m_guiCompositeImage and transitions it to layout TRANSFER_SRC_OPTIMAL, so if we don't call
// that render pass, we have to do the transition manually.
if(imguiDrawData)
{
VkRenderPassBeginInfo renderPassBeginInfo = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO};
renderPassBeginInfo.renderPass = m_renderPassGUI;
renderPassBeginInfo.framebuffer = m_guiFramebuffer;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = winWidth;
renderPassBeginInfo.renderArea.extent.height = winHeight;
renderPassBeginInfo.clearValueCount = 0;
renderPassBeginInfo.pClearValues = nullptr;
vkCmdBeginRenderPass(cmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(cmdBuffer, 0, 1, &m_viewportGUI);
vkCmdSetScissor(cmdBuffer, 0, 1, &m_scissorGUI);
ImGui_ImplVulkan_RenderDrawData(imguiDrawData, cmdBuffer);
vkCmdEndRenderPass(cmdBuffer);
// Since the render pass changed the layout and accesses, we have to tell the ImageAndView abstraction that
// these changed:
m_guiCompositeImage.currentLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
m_guiCompositeImage.currentAccesses = VK_ACCESS_TRANSFER_READ_BIT;
}
else
{
m_guiCompositeImage.transitionTo(cmdBuffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT);
}
// Finally, blit to the swapchain.
{
// Soundness check
assert(m_guiCompositeImage.c_width == winWidth);
assert(m_guiCompositeImage.c_height == winHeight);
VkImageBlit region = {0};
region.dstOffsets[1].x = winWidth;
region.dstOffsets[1].y = winHeight;
region.dstOffsets[1].z = 1;
region.srcOffsets[1].x = winWidth;
region.srcOffsets[1].y = winHeight;
region.srcOffsets[1].z = 1;
region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.dstSubresource.layerCount = 1;
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = 1;
cmdImageTransition(cmdBuffer, m_swapChain.getActiveImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdBlitImage(cmdBuffer, // Command buffer
m_guiCompositeImage.image.image, // Source image
m_guiCompositeImage.currentLayout, // Source image layout
m_swapChain.getActiveImage(), // Destination image
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // Destination image layout
1, // Number of regions