-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogical_display.cpp
408 lines (378 loc) · 20.4 KB
/
logical_display.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#include "logical_display.hpp"
#include "canvas_region_render_thread.hpp"
#include "command_execution_unit.hpp"
#include "logical_device.hpp"
namespace vkdd {
bool contains(vk::Rect2D const& rect, int32_t x, int32_t y)
{
return rect.offset.x <= x && x < (int32_t)(rect.offset.x + rect.extent.width) && rect.offset.y <= y
&& y < (int32_t)(rect.offset.y + rect.extent.height);
}
LogicalDisplay::LogicalDisplay(LogicalDevice& logicalDevice, vk::DisplayKHR display, CanvasRegion displayRegionOnCanvas)
: m_display(display)
, m_displayRegionOnCanvas(displayRegionOnCanvas)
, m_logicalDevice(logicalDevice)
{
}
LogicalDisplay::~LogicalDisplay() {}
bool LogicalDisplay::init(class Scene const& scene, std::vector<DeviceIndex> const& deviceIndices)
{
if(deviceIndices.empty())
{
LOGE("No physical device indices given.\n");
return false;
}
vk::PhysicalDevice initialPhysicalDevice = m_logicalDevice.getPhysicalDevice(deviceIndices.front());
initialPhysicalDevice.acquireWinrtDisplayNV(m_display);
// select display mode with largest visible region and refresh rate
std::vector<vk::DisplayModePropertiesKHR> allDisplayModeProps = initialPhysicalDevice.getDisplayModePropertiesKHR(m_display);
vk::DisplayModePropertiesKHR displayModeProps =
*std::max_element(allDisplayModeProps.begin(), allDisplayModeProps.end(),
[](vk::DisplayModePropertiesKHR a, vk::DisplayModePropertiesKHR b) {
return a.parameters.visibleRegion.width != b.parameters.visibleRegion.width ?
a.parameters.visibleRegion.width < b.parameters.visibleRegion.width :
a.parameters.visibleRegion.height != b.parameters.visibleRegion.height ?
a.parameters.visibleRegion.height < b.parameters.visibleRegion.height :
a.parameters.refreshRate < b.parameters.refreshRate;
});
m_surfaceSize = displayModeProps.parameters.visibleRegion;
std::vector<vk::DisplayPlanePropertiesKHR> deviceDisplayPlaneProps = initialPhysicalDevice.getDisplayPlanePropertiesKHR();
std::optional<uint32_t> foundPlaneIdx;
for(uint32_t planeIdx = 0; planeIdx < deviceDisplayPlaneProps.size(); ++planeIdx)
{
if(deviceDisplayPlaneProps[planeIdx].currentDisplay == m_display)
{
foundPlaneIdx = planeIdx;
break;
}
}
assert(foundPlaneIdx.has_value());
uint32_t planeIdx = foundPlaneIdx.value();
uint32_t stackIdx = deviceDisplayPlaneProps[planeIdx].currentStackIndex;
vk::DisplayPlaneCapabilitiesKHR planeCaps =
initialPhysicalDevice.getDisplayPlaneCapabilitiesKHR(displayModeProps.displayMode, planeIdx);
if(!(planeCaps.supportedAlpha & vk::DisplayPlaneAlphaFlagBitsKHR::eOpaque))
{
LOGE("Display plane does not support opaque alpha.\n");
return false;
}
vk::DisplaySurfaceCreateInfoKHR displaySurfaceCreateInfo({}, displayModeProps.displayMode, planeIdx, stackIdx,
vk::SurfaceTransformFlagBitsKHR::eIdentity, 1.0f,
vk::DisplayPlaneAlphaFlagBitsKHR::eOpaque,
displayModeProps.parameters.visibleRegion);
m_surface = m_logicalDevice.vkInstance().createDisplayPlaneSurfaceKHRUnique(displaySurfaceCreateInfo);
// vk_ddisplay
// there is one dedicated render context for each device rendering to the desired display
for(DeviceIndex devIdx : deviceIndices)
{
this->pushRenderContext(scene, devIdx);
}
return true;
}
void LogicalDisplay::pushRenderContext(class Scene const& scene, DeviceIndex deviceIndex)
{
// vk_ddisplay
// each physical device provides one ore more present rectangles for the display's surface
// e.g. with two physical displays attached to a single GPU and a 1x2 Mosaic configuration spanning those displays,
// that physical device will provide two present rectangles - one for each physical display - on the Mosaic's display
// surface
// the following code will combine these present rectangles into a single one to ease the rendering
FramebufferRegions framebufferRegions;
vk::PhysicalDevice physicalDevice = m_logicalDevice.getPhysicalDevice(deviceIndex);
std::vector<vk::Rect2D> presentRects = physicalDevice.getPresentRectanglesKHR(m_surface.get());
vk::SurfaceCapabilitiesKHR surfCaps = physicalDevice.getSurfaceCapabilitiesKHR(m_surface.get());
int32_t minX = std::numeric_limits<int32_t>::max();
int32_t maxX = std::numeric_limits<int32_t>::min();
int32_t minY = std::numeric_limits<int32_t>::max();
int32_t maxY = std::numeric_limits<int32_t>::min();
for(vk::Rect2D presentRect : presentRects)
{
framebufferRegions.emplace_back(FramebufferRegion{presentRect});
minX = std::min(minX, presentRect.offset.x);
maxX = std::max(maxX, presentRect.offset.x + (int32_t)presentRect.extent.width);
minY = std::min(minY, presentRect.offset.y);
maxY = std::max(maxY, presentRect.offset.y + (int32_t)presentRect.extent.height);
}
m_framebufferRegions.emplace(deviceIndex, std::move(framebufferRegions));
// check if combined present rectangle contains pixels that are not contained in any individual present rectangle
bool tightlyPacked = true;
for(int32_t y = minY; tightlyPacked && y < maxY; ++y)
{
for(int32_t x = minX; tightlyPacked && x < minX; ++x)
{
auto coveredBy = std::find_if(presentRects.begin(), presentRects.end(),
[=](vk::Rect2D const& presentRect) { return contains(presentRect, x, y); });
tightlyPacked &= coveredBy != presentRects.end();
}
}
char const* displayName = "unknown";
for(vk::DisplayPropertiesKHR dispProps : physicalDevice.getDisplayPropertiesKHR())
{
if(dispProps.display == m_display)
{
displayName = dispProps.displayName;
}
}
if(tightlyPacked)
{
LOGI("%d default present rectangle(s) of device %s on display %s were tightly packed into a single one.\n",
presentRects.size(), formatVkDeviceName(physicalDevice).c_str(), displayName);
}
else
{
LOGW(
"%d default present rectangles of device %s on display %s cannot be packed tightly. For optimal performance "
"and correct results you may want to adjust your display configuration.\n",
presentRects.size(), formatVkDeviceName(physicalDevice).c_str(), displayName);
}
// calculate the actual viewport from the surface's extent and its location on the canvas
float vpWidth = (float)surfCaps.currentExtent.width / m_displayRegionOnCanvas.m_width;
float vpHeight = (float)surfCaps.currentExtent.height / m_displayRegionOnCanvas.m_height;
float vpOffsetX = -vpWidth * m_displayRegionOnCanvas.m_offsetX;
float vpOffsetY = -vpHeight * m_displayRegionOnCanvas.m_offsetY;
vk::Viewport viewport(vpOffsetX, vpOffsetY, vpWidth, vpHeight, 0.0f, 1.0f);
vk::Rect2D renderArea = vk::Rect2D{{minX, minY}, {(uint32_t)(maxX - minX), (uint32_t)(maxY - minY)}};
m_canvasRegionsRenderThreads.emplace_back(
std::make_unique<CanvasRegionRenderThread>(scene, m_logicalDevice, deviceIndex, renderArea, viewport));
m_deviceMask.add(deviceIndex);
}
vk::PhysicalDevice LogicalDisplay::findMainPhysicalDevice() const
{
for(DeviceIndex i = 0; i < m_logicalDevice.getNumPhysicalDevices(); ++i)
{
if(m_logicalDevice.getPhysicalDevice(i).getSurfaceSupportKHR(m_logicalDevice.getGraphicsQueueFamilyIndex(),
m_surface.get())
!= 0)
{
return m_logicalDevice.getPhysicalDevice(i);
}
}
return {};
}
void LogicalDisplay::querySurfaceFormats(std::vector<vk::SurfaceFormatKHR>& formats) const
{
vk::PhysicalDevice dev = this->findMainPhysicalDevice();
if(dev)
{
formats = dev.getSurfaceFormatsKHR(m_surface.get());
}
}
bool LogicalDisplay::start(vk::SurfaceFormatKHR swapchainSurfFormat, vk::RenderPass renderPass)
{
vk::PhysicalDevice mainPhysicalDevice = this->findMainPhysicalDevice();
if(!mainPhysicalDevice)
{
LOGE("No physical device with display surface support found.\n");
return false;
}
// vk_ddisplay
// creating the swap chain images of the display surface is no different to conventional window surface swap chain
// images creation
// Note however that eFifo is currently the only supported present mode
std::vector<vk::PresentModeKHR> surfPresentModes = mainPhysicalDevice.getSurfacePresentModesKHR(m_surface.get());
if(surfPresentModes.empty())
{
LOGE("No present modes avaiable for display.\n");
return false;
}
vk::PresentModeKHR presentMode = surfPresentModes.front();
for(vk::PresentModeKHR pm : surfPresentModes)
{
if(pm == vk::PresentModeKHR::eFifo)
{
presentMode = pm;
break;
}
}
vk::SurfaceCapabilitiesKHR surfCaps = mainPhysicalDevice.getSurfaceCapabilitiesKHR(m_surface.get());
uint32_t imageCount = std::max(surfCaps.minImageCount, std::min(NUM_QUEUED_FRAMES, surfCaps.maxImageCount));
vk::DeviceGroupSwapchainCreateInfoKHR deviceGroupSwapchainCreateInfo(vk::DeviceGroupPresentModeFlagBitsKHR::eLocalMultiDevice);
vk::SwapchainCreateInfoKHR swapchainCreateInfo(
{}, m_surface.get(), imageCount, swapchainSurfFormat.format, swapchainSurfFormat.colorSpace, surfCaps.currentExtent,
1, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, vk::SharingMode::eExclusive, {},
surfCaps.currentTransform, vk::CompositeAlphaFlagBitsKHR::eOpaque, presentMode, true, {}, &deviceGroupSwapchainCreateInfo);
m_swapchain = m_logicalDevice.vkDevice().createSwapchainKHRUnique(swapchainCreateInfo);
for(vk::UniqueSemaphore& sem : m_imageAcquiredSemaphores)
{
sem = m_logicalDevice.vkDevice().createSemaphoreUnique({});
}
m_readyToPresentSem = m_logicalDevice.vkDevice().createSemaphoreUnique({});
vk::ImageCreateInfo depthStencilImageCreateInfo({}, vk::ImageType::e2D, vk::Format::eD24UnormS8Uint,
vk::Extent3D(surfCaps.currentExtent, 1), 1, 1, vk::SampleCountFlagBits::e1,
vk::ImageTiling::eOptimal, vk::ImageUsageFlagBits::eDepthStencilAttachment,
vk::SharingMode::eExclusive, nullptr, vk::ImageLayout::eUndefined);
m_depthStencil = m_logicalDevice.allocateImage({}, depthStencilImageCreateInfo, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk::ImageViewCreateInfo depthStencilImageViewCreateInfo(
{}, m_depthStencil.m_image.get(), vk::ImageViewType::e2D, depthStencilImageCreateInfo.format, {},
{vk::ImageAspectFlagBits::eDepth | vk::ImageAspectFlagBits::eStencil, 0, 1, 0, 1});
m_depthStencilImageView = m_logicalDevice.vkDevice().createImageViewUnique(depthStencilImageViewCreateInfo);
for(vk::Image swapchainImage : m_logicalDevice.vkDevice().getSwapchainImagesKHR(m_swapchain.get()))
{
vk::ImageViewCreateInfo swapchainImageViewCreateInfo({}, swapchainImage, vk::ImageViewType::e2D, swapchainSurfFormat.format,
{vk::ComponentSwizzle::eIdentity, vk::ComponentSwizzle::eIdentity,
vk::ComponentSwizzle::eIdentity, vk::ComponentSwizzle::eIdentity},
vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
m_swapchainImageViews.emplace_back(m_logicalDevice.vkDevice().createImageViewUnique(swapchainImageViewCreateInfo));
std::vector<vk::ImageView> framebufferAttachments = {m_swapchainImageViews.back().get(), m_depthStencilImageView.get()};
vk::FramebufferCreateInfo frameBufferCreateInfo({}, renderPass, framebufferAttachments,
surfCaps.currentExtent.width, surfCaps.currentExtent.height, 1);
m_framebuffers.emplace_back(m_logicalDevice.vkDevice().createFramebufferUnique(frameBufferCreateInfo));
}
for(auto& it : m_framebufferRegions)
{
DeviceIndex devIdx = it.first;
for(FramebufferRegion& region : it.second)
{
vk::ImageCreateInfo createInfo({}, vk::ImageType::e2D, swapchainSurfFormat.format, vk::Extent3D{region.m_region.extent, 1},
1, 1, vk::SampleCountFlagBits::e1, vk::ImageTiling::eOptimal,
vk::ImageUsageFlagBits::eTransferSrc | vk::ImageUsageFlagBits::eTransferDst,
vk::SharingMode::eExclusive, {}, vk::ImageLayout::eUndefined);
region.m_intermediate = m_logicalDevice.allocateImage(devIdx, createInfo, vk::MemoryPropertyFlagBits::eDeviceLocal);
}
}
vk::DeviceSize sizePerPixel;
switch(swapchainSurfFormat.format)
{
case vk::Format::eB8G8R8A8Srgb:
case vk::Format::eR8G8B8A8Srgb:
case vk::Format::eB8G8R8A8Unorm:
case vk::Format::eR8G8B8A8Unorm:
sizePerPixel = 4;
break;
default:
LOGE("TODO");
#if defined(WIN32) && !defined(NDEBUG)
_CrtDbgBreak();
#endif
return false;
}
vk::BufferCreateInfo hostFramebufferCreateInfo({}, surfCaps.currentExtent.width * surfCaps.currentExtent.height * sizePerPixel,
vk::BufferUsageFlagBits::eTransferDst, vk::SharingMode::eExclusive);
m_hostFramebufferCopy = m_logicalDevice.allocateStagingBuffer(hostFramebufferCreateInfo);
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
rt->start();
}
return true;
}
void LogicalDisplay::renderFrameAsync(CommandExecutionUnit& cmdExecUnit)
{
// first the next swap chain image is acquired
vk::Semaphore imageAcquiredSemaphore =
m_imageAcquiredSemaphores[m_logicalDevice.getCurrentFrameIndex() % NUM_QUEUED_FRAMES].get();
vk::AcquireNextImageInfoKHR acquireNextImageInfo(m_swapchain.get(), std::numeric_limits<uint64_t>::max(),
imageAcquiredSemaphore, {}, m_deviceMask);
vk::ResultValue rv = m_logicalDevice.vkDevice().acquireNextImage2KHR(acquireNextImageInfo);
if(rv.result != vk::Result::eSuccess)
{
LOGE("acquireNextImage2KHR() failed.\n");
return;
}
m_lastAcquiredSwapchainImageIdx = rv.value;
m_lastAcquiredSwapchainImage =
m_logicalDevice.vkDevice().getSwapchainImagesKHR(m_swapchain.get())[m_lastAcquiredSwapchainImageIdx];
// the pre render cmd buffer will wait for the swap chain image's semaphore, transition the image to the
// eColorAttachmentOptimal layout, and then notify each render context's individual semaphore
// this must be done because one might have multiple threads rendering to the same image but a binary semaphore can
// only be waited on a single time and the layout transition too must be executed only once
m_preRenderCmdBuffer = cmdExecUnit.requestCommandBuffer(m_logicalDevice.getGraphicsQueueFamilyIndex());
cmdExecUnit.pushWait(m_preRenderCmdBuffer, {imageAcquiredSemaphore, 0, vk::PipelineStageFlagBits2::eColorAttachmentOutput});
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
rt->recordCommandsAsync(cmdExecUnit, m_framebuffers[m_lastAcquiredSwapchainImageIdx].get());
cmdExecUnit.pushSignal(m_preRenderCmdBuffer,
{rt->getImageAcquiredSemaphore(), 0, vk::PipelineStageFlagBits2::eEarlyFragmentTests, 0});
}
std::vector<vk::ImageMemoryBarrier2> initialImageBarriers = {
{vk::PipelineStageFlagBits2::eColorAttachmentOutput, vk::AccessFlagBits2::eNone, vk::PipelineStageFlagBits2::eColorAttachmentOutput,
vk::AccessFlagBits2::eMemoryWrite, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal,
m_logicalDevice.getGraphicsQueueFamilyIndex(), m_logicalDevice.getGraphicsQueueFamilyIndex(),
m_lastAcquiredSwapchainImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)}};
std::vector<vk::ImageMemoryBarrier2> temp;
if(m_logicalDevice.getCurrentFrameIndex() == 0)
{
initialImageBarriers.emplace_back(
vk::PipelineStageFlagBits2::eNone, vk::AccessFlagBits2::eNone, vk::PipelineStageFlagBits2::eEarlyFragmentTests,
vk::AccessFlagBits2::eMemoryRead | vk::AccessFlagBits2::eMemoryWrite, vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal, m_logicalDevice.getGraphicsQueueFamilyIndex(),
m_logicalDevice.getGraphicsQueueFamilyIndex(), m_depthStencil.m_image.get(),
vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eDepth | vk::ImageAspectFlagBits::eStencil, 0, 1, 0, 1));
}
m_preRenderCmdBuffer.begin({vk::CommandBufferUsageFlagBits::eOneTimeSubmit});
m_preRenderCmdBuffer.pipelineBarrier2({vk::DependencyFlagBits::eByRegion, {}, {}, initialImageBarriers});
m_preRenderCmdBuffer.end();
}
std::optional<LogicalDisplay::PresentData> LogicalDisplay::finishFrameRendering(CommandExecutionUnit& cmdExecUnit)
{
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
rt->finishCommandRecording();
}
// the post render cmd buffer will wait for all render contexts to finish rendering, transition the swap chain image
// to the present layout, and signal the present semaphore
// in order to show a preview image in the control window, the swap chain image might be transfered to a separate
// buffer from where it will be asynchronously processed further
vk::CommandBuffer postRenderCmdBuffer = cmdExecUnit.requestCommandBuffer(m_logicalDevice.getGraphicsQueueFamilyIndex());
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
cmdExecUnit.pushWait(postRenderCmdBuffer, {rt->getRenderDoneSemaphore(), 0, vk::PipelineStageFlagBits2::eAllCommands, 0});
}
postRenderCmdBuffer.begin({vk::CommandBufferUsageFlagBits::eOneTimeSubmit});
// if(framebufferTransferQueueFamilyIdx.has_value())
// {
// //this->storeFramebuffer(cmdExecUnit, framebufferTransferQueueFamilyIdx.value());
// //@todo
// }
// else
{
vk::ImageMemoryBarrier2 finalImageBarrier{vk::PipelineStageFlagBits2::eColorAttachmentOutput,
vk::AccessFlagBits2::eMemoryWrite,
vk::PipelineStageFlagBits2::eAllCommands,
vk::AccessFlagBits2::eNone,
vk::ImageLayout::eColorAttachmentOptimal,
vk::ImageLayout::ePresentSrcKHR,
m_logicalDevice.getGraphicsQueueFamilyIndex(),
m_logicalDevice.getGraphicsQueueFamilyIndex(),
m_lastAcquiredSwapchainImage,
vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)};
postRenderCmdBuffer.pipelineBarrier2({vk::DependencyFlagBits::eByRegion, {}, {}, finalImageBarrier});
}
postRenderCmdBuffer.end();
cmdExecUnit.pushSignal(postRenderCmdBuffer, {m_readyToPresentSem.get(), 0, vk::PipelineStageFlagBits2::eAllCommands, 0});
return PresentData{m_readyToPresentSem.get(), m_swapchain.get(), m_lastAcquiredSwapchainImageIdx};
}
void LogicalDisplay::storeFramebuffer(CommandExecutionUnit const& cmdExecUnit, uint32_t transferQueueFamilyIdx) {}
void LogicalDisplay::copyFramebufferToHost(vk::CommandBuffer cmdBuffer, vk::Buffer dstBuffer) {}
void LogicalDisplay::interrupt()
{
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
rt->interrupt();
}
}
void LogicalDisplay::join()
{
for(UniqueCanvasRegionRenderThread const& rt : m_canvasRegionsRenderThreads)
{
rt->join();
}
}
} // namespace vkdd