-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathclifford.html
133 lines (126 loc) · 3.09 KB
/
clifford.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
<body>
<div id="deepscatter"></div>
</body>
<script type="module">
import Scatterplot from './src/deepscatter';
import { tableFromArrays, Table } from 'apache-arrow';
let batch_no = 0;
/* Clifford attractor frame.*/
function attractor(
constants = {
a: -1.24458046630025,
b: -1.25191834103316,
c: -1.81590817030519,
d: -1.90866735205054,
x0: 0,
y0: 0,
},
center,
n_batches
) {
// this is a function to create an apache arrow table based on a
// set of constants and a Clifford attractor. See https://observablehq.com/@mbostock/clifford-attractor.
function make_batch(start = 0, length = 65536, constants) {
const batch_number_here = batch_no++;
// make a batch of clifford generator data starting at start and of length length
const { a, b, c, d } = constants;
let x = new Float32Array(length);
let y = new Float32Array(length);
let x0 = new Float32Array(length);
let y0 = new Float32Array(length);
let ix = new Float32Array(length);
let batch_id = new Float32Array(length).fill(batch_number_here);
for (let i = start; i < start + length; i++) {
ix[i - start] = i;
x[i - start] =
Math.sin(a * constants.y0) +
c * Math.cos(a * constants.x0) +
center[0];
y[i - start] =
Math.sin(b * constants.x0) +
d * Math.cos(b * constants.y0) +
center[1];
if (i - start <= length) {
x0[i - start + 1] = x[i - start];
y0[i - start + 1] = y[i - start];
}
constants.x0 = x[i - start] - center[0];
constants.y0 = y[i - start] - center[1];
}
return tableFromArrays({
x: x,
y: y,
x0,
y0,
ix: ix,
batch_id,
});
}
const batches = [];
for (let i = 0; i < n_batches; i++) {
const batch = make_batch(i * 65536, 65536, constants);
batches.push(batch);
}
const table = new Table(...batches);
return table;
}
const t1 = attractor(
{
a: -1.24458046630025,
b: -1.25191834103316,
c: -1.81590817030519,
d: -1.90866735205054,
x0: 0,
y0: 0,
},
[1, -1],
4
);
const t2 = attractor(
{
a: -1.14458046630025,
b: -1.25191834103316,
c: -1.81590817030519,
d: -1.90866735205054,
x0: 0,
y0: 0,
},
[-1, 1],
96
);
const table = t1.concat(t2);
const plot = new Scatterplot('#deepscatter');
plot.plotAPI({
arrow_table: table,
point_size: 2,
max_points: 2.5e6,
alpha: 50,
background_color: '#EEEDDE',
zoom_balance: 0.5,
duration: 12000,
encoding: {
x: {
field: 'x0',
transform: 'literal',
},
x0: {
field: 'x',
transform: 'literal',
},
y: {
field: 'y0',
transform: 'literal',
},
y0: {
field: 'y',
transform: 'literal',
},
color: {
field: 'batch_id',
range: 'category10',
domain: [0, 8],
},
},
});
window.plot = plot;
</script>