diff --git a/src/eddymotion/model/kernels.py b/src/eddymotion/model/kernels.py new file mode 100644 index 00000000..99c13327 --- /dev/null +++ b/src/eddymotion/model/kernels.py @@ -0,0 +1,235 @@ +# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- +# vi: set ft=python sts=4 ts=4 sw=4 et: +# +# Copyright 2024 The NiPreps Developers +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY kIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# We support and encourage derived works from this project, please read +# about our expectations at +# +# https://www.nipreps.org/community/licensing/ +# +import numpy as np +from sklearn.gaussian_process.kernels import Kernel + + +class SquaredExponentialCovarianceKernel(Kernel): + r"""Kernel based on a squared exponential function for Gaussian processes on + multi-shell DWI data following to eqs. 14 and 16 in [Andersson15]_. + + For a 2-shell case, the $$\mathbf{K}$$ kernel can be written as: + + .. math:: + + \begin{equation} + \mathbf{K} = \left[ + \begin{matrix} + \lambda C_{\theta}(\theta (\mathbf{G}_{1}); a) + \sigma_{1}^{2} \mathbf{I} & \lambda C_{\theta}(\theta (\mathbf{G}_{2}, \mathbf{G}_{1}); a) C_{b}(b_{2}, b_{1}; \ell) \\ + \lambda C_{\theta}(\theta (\mathbf{G}_{1}, \mathbf{G}_{2}); a) C_{b}(b_{1}, b_{2}; \ell) & \lambda C_{\theta}(\theta (\mathbf{G}_{2}); a) + \sigma_{2}^{2} \mathbf{I} \\ + \end{matrix} + \right] + \end{equation} + + Parameters + ---------- + lambda_ : float + Scale parameter for the covariance function. + a : float + Distance parameter where the covariance function goes to zero. + sigma_sq : float + Noise variance term. + """ + + def __init__(self, lambda_=1.0, a=1.0, sigma_sq=1.0): + self.lambda_ = lambda_ + self.a = a + self.sigma_sq = sigma_sq + + def __call__(self, gradients): + """Compute the kernel matrix. + + Parameters + ---------- + gradients : RAS+b + . + + Returns + ------- + K : :obj:`~numpy.ndarray`, shape (n_samples, n_samples) + Kernel matrix. + """ + + # ToDo + # Call compute_squared_exponential_covariance_kernel + pass + + def diag(self, X): + """Return the diagonal of the kernel matrix. + + Parameters + ---------- + X : :obj:`~numpy.ndarray`, shape (n_samples, n_features) + Input data. + + Returns + ------- + :obj:`~numpy.ndarray`, shape (n_samples,) + Diagonal of the kernel matrix. + """ + + return np.full(X.shape[0], self.lambda_ + self.sigma_sq) + + def is_stationary(self): + """Return whether the kernel is stationary. + + Returns + ------- + :obj:`bool` + Returns always ``True``. + """ + + return True + + def get_params(self, deep=True): + """Get parameters of the kernel. + + Parameters + ---------- + deep : :obj:`bool` + Whether to return the parameters of the contained subobjects. + + Returns + ------- + params : :obj:`dict` + Parameter names mapped to their values. + """ + + return {"lambda_": self.lambda_, "a": self.a, "sigma_sq": self.sigma_sq} + + def set_params(self, **params): + """Set parameters of the kernel. + + Parameters + ---------- + params : :obj:`dict` + Kernel parameters. + + Returns + ------- + self + """ + + self.lambda_ = params.get("lambda_", self.lambda_) + self.a = params.get("a", self.a) + self.sigma_sq = params.get("sigma_sq", self.sigma_sq) + return self + + +def compute_squared_exponential_shell_covariance(grpi, grpb, ell): + r"""Compute the squared exponential smooth function describing how the + covariance changes along the b direction. + + It uses the log of the b-values as the measure of distance along the + b-direction according to eq. 15 in [Andersson15]_. + + .. math:: + + C_{b}(b, b'; \ell) = \exp\left( - \frac{(\log b - \log b')^2}{2 \ell^2} \right) + + Parameters + ---------- + grpi : :obj:`~numpy.ndarray` + Group of indices. + grpb : :obj:`~numpy.ndarray` + Groups of b-values. + ell : float + + Returns + ------- + The squared exponential function. + """ + + # Compute log probability of b-values + log_grpb = np.log(grpb) + bv_diff = log_grpb[grpi[:, None]] - log_grpb[grpi] + return np.exp(-(bv_diff**2) / (2 * ell**2)) + + +def compute_squared_exponential_covariance_kernel(K, angle_mat, thpar, grpb, grpi): + r"""Compute the squared exponential covariance matrix following to eq. 14 in + [Andersson15]_. + + .. math:: + + k(\textbf{x}, \textbf{x'}) = C_{\theta}(\mathbf{g}, \mathbf{g'}; a) C_{b}(\abs{b - b'}; \ell) + + where :math:`C_{\theta}` is given by: + + .. math:: + + \begin{equation} + C(\theta) = + \begin{cases} 1 - \frac{3 \theta}{2 a} + \frac{\theta^3}{2 a^3} & \textnormal{if} \; \theta \leq a \\ + 0 & \textnormal{if} \; \theta > a + \end{cases} + \end{equation} + + :math:`\theta` being computed as: + + .. math:: + + \theta(\mathbf{g}, \mathbf{g'}) = \arccos(\abs{\langle \mathbf{g}, \mathbf{g'} \rangle}) + + and :math:`C_{b}` is given by: + + .. math:: + + C_{b}(b, b'; \ell) = \exp\left( - \frac{(\log b - \log b')^2}{2 \ell^2} \right) + + being :math:`b` and :math:`b'` the b-values, and :math:`\mathbf{g}` and + :math:`\mathbf{g'}` the unit diffusion-encoding gradient unit vectors of the + shells; and :math:`{a, \ell}` some hyperparameters. + + Parameters + ---------- + + Returns + ------- + """ + + sm = thpar[0] + a = thpar[1] + ell = thpar[2] + + # Compute angular covariance + # ToDo + # Vectorize this/take it from the single shell PR + for j in range(K.shape[1]): + for i in range(j, K.shape[0]): + theta = angle_mat[i + 1, j + 1] + if a > theta: + K[i + 1, j + 1] = sm * (1.0 - 1.5 * theta / a + 0.5 * (theta**3) / (a**3)) + else: + K[i + 1, j + 1] = 0.0 + + # Compute b-value covariance + # ToDo + # Vectorize this/call compute_squared_exponential_shell_covariance + if ngrp > 1: + log_grpb = np.log(grpb()) + for j in range(K.shape[1]): + for i in range(j + 1, K.shape[0]): + bvdiff = log_grpb[grpi[i]] - log_grpb[grpi[j]] + if bvdiff: + K[i + 1, j + 1] *= np.exp(-(bvdiff**2) / (2 * ell**2)) diff --git a/src/eddymotion/model/tests/test_kernels.py b/src/eddymotion/model/tests/test_kernels.py new file mode 100644 index 00000000..9f75c04a --- /dev/null +++ b/src/eddymotion/model/tests/test_kernels.py @@ -0,0 +1,39 @@ +# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- +# vi: set ft=python sts=4 ts=4 sw=4 et: +# +# Copyright 2024 The NiPreps Developers +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY kIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# We support and encourage derived works from this project, please read +# about our expectations at +# +# https://www.nipreps.org/community/licensing/ +# +from src.eddymotion.model.kernels import ( + SquaredExponentialCovarianceKernel, + compute_squared_exponential_shell_covariance, + compute_squared_exponential_covariance_kernel, +) + + +def test_SquaredExponentialCovarianceKernel(): + kernel = SquaredExponentialCovarianceKernel() + + +def test_compute_squared_exponential_shell_covariance(): + sq_exp_shell_cov = compute_squared_exponential_shell_covariance() + + +def test_compute_squared_exponential_covariance_kernel(): + sq_exp_shell_cov_kern = compute_squared_exponential_covariance_kernel()