-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_video.py
35 lines (32 loc) · 951 Bytes
/
process_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import cv2
import time
import matplotlib.pyplot as plt
from darkflow.net.build import TFNet
option = {
'model' : 'cfg/yolo.cfg',
'load': 'bin/yolov2.weights',
'threshold':0.3
}
tfnet = TFNet(option)
capture = cv2.VideoCapture('Hitman.mp4')
colors = [tuple(255*np.random.rand(3)) for i in range(15)]
while(capture.isOpened()):
stime = time.time()
ret, frame = capture.read()
results = tfnet.return_predict(frame)
if ret:
for color, result in zip(colors,results):
tl = (result['topleft']['x'],result['topleft']['y'])
br = (result['bottomright']['x'],result['bottomright']['y'])
label = result['label']
frame = cv2.rectangle(frame,tl,br,color,6)
frame = cv2.putText(frame,label,tl,cv2.FONT_HERSHEY_COMPLEX,1,(255,0,0),2)
cv2.imshow('frame',frame)
print('FPS {:.1f}'.format(1/(time.time()-stime)))
if cv2.waitKey(1)&0xFF == ord('q'):
break
else:
capture.release()
cv2.destroyAllWindows()
break