-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_cifar.py
55 lines (41 loc) · 1.79 KB
/
main_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import dbas
import tensorflow as tf
from gan import ConvNetDiscriminator, DeconvGenerator, GAN, ClassConditioner, AuxiliaryClassifier, FeatureMatching
import numpy as np
# as in the AuxGan Paper
gen = DeconvGenerator(layers=3, filters=96, regularizer=tf.contrib.layers.l2_regularizer(1e-4))
dis = ConvNetDiscriminator(layers=6, filters=16, regularizer=tf.contrib.layers.l2_regularizer(1e-4), dropout=0.5,
stride=[2, 1, 2, 1, 2, 1], kernel_size=3)
gan = GAN(gen, dis, 100)
gan.add_conditioning(ClassConditioner(10), discriminator=False)
gan.add_auxillary(FeatureMatching())
gan.add_auxillary(AuxiliaryClassifier(10))
gan = tf.estimator.Estimator(gan.model_fn, "cifar_gan")
def input_fn(data, shuffle):
repeats = None if shuffle else 1
return tf.estimator.inputs.numpy_input_fn({"image": data.data * 2.0 - 1.0}, np.argmax(data.labels, axis=1),
shuffle=shuffle, num_epochs=repeats, batch_size=64)
def random_input_fn(size, classes):
return lambda: {"latent": tf.random_uniform((len(classes), size), -1.0, 1.0),
"labels": tf.constant(classes, dtype=tf.int64),
"image": tf.zeros((len(classes), 32, 32, 3))}
cifar = dbas.datasets.CIFAR()
#gan.train(input_fn=input_fn(cifar.train, True), max_steps=50000*100/64)
#print(gan.evaluate(input_fn(cifar.test, shuffle=False)))
predictor = gan.predict(random_input_fn(100, np.arange(0, 10, 1)), predict_keys=["generated"])
i = 0
j = 0
images = []
row = []
for prediction in predictor:
row += [prediction["generated"]]
i += 1
if i == 10:
images += [np.concatenate(row, axis=1)]
row = []
i = 0
j += 1
if j == 10:
break
import scipy.misc
scipy.misc.imsave("cifar.png", np.concatenate(images, axis=0))