-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathgenerate_data.py
123 lines (98 loc) · 3.57 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import math
import numpy as np
import os
from tqdm import tqdm
import torch
from solver.random_fields import GaussianRF, GaussianRF2d
from solver.kolmogorov_flow import KolmogorovFlow2d
from solver.periodic import NavierStokes2d
from timeit import default_timer
import argparse
def legacy_solver(args):
save_dir = args.outdir
os.makedirs(save_dir, exist_ok=True)
device = torch.device('cuda:0')
s = 1024
sub = s // args.res_x
n = 4 # forcing
Re = args.re
T_in = 100.0
T = args.T
t = args.t_res
dt = 1.0 / t
GRF = GaussianRF(2, s, 2 * math.pi, alpha=2.5, tau=7, device=device)
u0 = GRF.sample(1)
NS = KolmogorovFlow2d(u0, Re, n)
NS.advance(T_in, delta_t=1e-3)
sol = np.zeros((T, t + 1, s // sub, s // sub))
sol_ini = NS.vorticity().squeeze(0).cpu().numpy()[::sub, ::sub]
pbar = tqdm(range(T))
for i in pbar:
sol[i, 0, :, :] = sol_ini
for j in range(t):
t1 = default_timer()
NS.advance(dt, delta_t=1e-3)
sol[i, j + 1, :, :] = NS.vorticity().squeeze(0).cpu().numpy()[::sub, ::sub]
t2 = default_timer()
pbar.set_description(
(
f'{i}, time cost: {t2-t1}'
)
)
sol_ini = sol[i, -1, :, :]
save_path = os.path.join(save_dir, f'NS-Re{int(Re)}_T{t}.npy')
# np.save('NS_fine_Re500_S512_s64_T500_t128.npy', sol)
np.save(save_path, sol)
def gen_data(args):
dtype = torch.float64
device = torch.device('cuda:0')
save_dir = args.outdir
os.makedirs(save_dir, exist_ok=True)
T = args.T # total time
bsize = args.batchsize
L = 2 * math.pi
s =args.x_res
x_sub = args.x_sub
t_res = args.t_res
dt = 1 / t_res
re = args.re
solver = NavierStokes2d(s,s,L,L,device=device,dtype=dtype)
grf = GaussianRF2d(s,s,L,L,alpha=2.5,tau=3.0,sigma=None,device=device,dtype=dtype)
t = torch.linspace(0, L, s+1, dtype=dtype, device=device)[0:-1]
_, Y = torch.meshgrid(t, t, indexing='ij')
f = -4*torch.cos(4.0*Y)
vor = np.zeros((bsize, T, t_res + 1, s // x_sub, s // x_sub))
pbar = tqdm(range(T))
w = grf.sample(bsize)
w = solver.advance(w, f, T=100, Re=re, adaptive=True)
init_vor = w[:, ::x_sub, ::x_sub].cpu().type(torch.float32).numpy()
for j in pbar:
vor[:, j, 0, :, :] = init_vor
for k in range(t_res):
t1 = default_timer()
w = solver.advance(w, f, T=dt, Re=re, adaptive=True)
vor[:, j, k+1, :, :] = w[:,::x_sub,::x_sub].cpu().type(torch.float32).numpy()
t2 = default_timer()
pbar.set_description(
(
f'{j}, time cost: {t2-t1}'
)
)
init_vor = vor[:, j, -1, :, :]
for i in range(bsize):
save_path = os.path.join(save_dir, f'NS-Re{int(re)}_T{T}_id{i}.npy')
# np.save('NS_fine_Re500_S512_s64_T500_t128.npy', sol)
np.save(save_path, vor[i])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--re', type=float, default=40.0)
parser.add_argument('--x_res', type=int, default=512)
parser.add_argument('--x_sub', type=int, default=2)
parser.add_argument('--T', type=int, default=300)
parser.add_argument('--outdir', type=str, default='../data')
parser.add_argument('--t_res', type=int, default=512)
parser.add_argument('--batchsize', type=int, default=1)
parser.add_argument('--num_batchs', type=int, default=1)
args = parser.parse_args()
gen_data(args)