-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathcavity_flow.py
361 lines (280 loc) · 13.4 KB
/
cavity_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""
@author: Zongyi Li
This file is the Fourier Neural Operator for 3D problem such as the Navier-Stokes equation discussed in Section 5.3 in the [paper](https://arxiv.org/pdf/2010.08895.pdf),
which takes the 2D spatial + 1D temporal equation directly as a 3D problem
"""
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from timeit import default_timer
from torch.optim import Adam
from train_utils.datasets import MatReader
from train_utils.losses import LpLoss
from train_utils.utils import count_params
torch.manual_seed(0)
np.random.seed(0)
################################################################
# 3d fourier layers
################################################################
class SpectralConv3d(nn.Module):
def __init__(self, in_channels, out_channels, modes1, modes2, modes3):
super(SpectralConv3d, self).__init__()
"""
3D Fourier layer. It does FFT, linear transform, and Inverse FFT.
"""
self.in_channels = in_channels
self.out_channels = out_channels
self.modes1 = modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1
self.modes2 = modes2
self.modes3 = modes3
self.scale = (1 / (in_channels * out_channels))
self.weights1 = nn.Parameter(
self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3,
dtype=torch.cfloat))
self.weights2 = nn.Parameter(
self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3,
dtype=torch.cfloat))
self.weights3 = nn.Parameter(
self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3,
dtype=torch.cfloat))
self.weights4 = nn.Parameter(
self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3,
dtype=torch.cfloat))
# Complex multiplication
def compl_mul3d(self, input, weights):
# (batch, in_channel, x,y,t ), (in_channel, out_channel, x,y,t) -> (batch, out_channel, x,y,t)
return torch.einsum("bixyz,ioxyz->boxyz", input, weights)
def forward(self, x):
batchsize = x.shape[0]
# Compute Fourier coeffcients up to factor of e^(- something constant)
x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1])
# Multiply relevant Fourier modes
out_ft = torch.zeros(batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1) // 2 + 1,
dtype=torch.cfloat, device=x.device)
out_ft[:, :, :self.modes1, :self.modes2, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, :self.modes1, :self.modes2, :self.modes3], self.weights1)
out_ft[:, :, -self.modes1:, :self.modes2, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, -self.modes1:, :self.modes2, :self.modes3], self.weights2)
out_ft[:, :, :self.modes1, -self.modes2:, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, :self.modes1, -self.modes2:, :self.modes3], self.weights3)
out_ft[:, :, -self.modes1:, -self.modes2:, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, -self.modes1:, -self.modes2:, :self.modes3], self.weights4)
# Return to physical space
x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1)))
return x
class FNO3d(nn.Module):
def __init__(self, modes1, modes2, modes3, width, padding):
super(FNO3d, self).__init__()
"""
The overall network. It contains 4 layers of the Fourier layer.
1. Lift the input to the desire channel dimension by self.fc0 .
2. 4 layers of the integral operators u' = (W + K)(u).
W defined by self.w; K defined by self.conv .
3. Project from the channel space to the output space by self.fc1 and self.fc2 .
input: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t). It's a constant function in time, except for the last index.
input shape: (batchsize, x=64, y=64, t=40, c=13)
output: the solution of the next 40 timesteps
output shape: (batchsize, x=64, y=64, t=40, c=1)
"""
self.modes1 = modes1
self.modes2 = modes2
self.modes3 = modes3
self.width = width
self.padding = padding # pad the domain if input is non-periodic
self.fc0 = nn.Linear(5, 32)
self.fc1 = nn.Linear(32, self.width)
# input channel is 12: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t)
self.conv0 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv1 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv2 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv3 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.w0 = nn.Conv3d(self.width, self.width, 1)
self.w1 = nn.Conv3d(self.width, self.width, 1)
self.w2 = nn.Conv3d(self.width, self.width, 1)
self.w3 = nn.Conv3d(self.width, self.width, 1)
self.fc2 = nn.Linear(self.width, 128)
self.fc3 = nn.Linear(128, 3)
def forward(self, x):
grid = self.get_grid(x.shape, x.device)
x = torch.cat((x, grid), dim=-1)
x = self.fc0(x)
x = F.tanh(x)
x = self.fc1(x)
x = x.permute(0, 4, 1, 2, 3)
x = F.pad(x, [0, self.padding, 0, self.padding, 0, self.padding]) # pad the domain if input is non-periodic
x1 = self.conv0(x)
x2 = self.w0(x)
x = x1 + x2
x = F.tanh(x)
x1 = self.conv1(x)
x2 = self.w1(x)
x = x1 + x2
x = F.tanh(x)
x1 = self.conv2(x)
x2 = self.w2(x)
x = x1 + x2
x = F.tanh(x)
x1 = self.conv3(x)
x2 = self.w3(x)
x = x1 + x2
# x = x[:, :, :-self.padding, :-self.padding, :-self.padding]
x = x.permute(0, 2, 3, 4, 1) # pad the domain if input is non-periodic
x = self.fc2(x)
x = F.tanh(x)
x = self.fc3(x)
return x
def get_grid(self, shape, device):
batchsize, size_x, size_y, size_z = shape[0], shape[1], shape[2], shape[3]
gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float)
gridx = gridx.reshape(1, size_x, 1, 1, 1).repeat([batchsize, 1, size_y, size_z, 1])
gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float)
gridy = gridy.reshape(1, 1, size_y, 1, 1).repeat([batchsize, size_x, 1, size_z, 1])
gridz = torch.tensor(np.linspace(0, 1, size_z), dtype=torch.float)
gridz = gridz.reshape(1, 1, 1, size_z, 1).repeat([batchsize, size_x, size_y, 1, 1])
return torch.cat((gridx, gridy, gridz), dim=-1).to(device)
################################################################
# configs
################################################################
# PATH = '../data/cavity.mat'
PATH = '../data/lid-cavity.mat'
ntest = 1
modes = 8
width = 32
batch_size = 1
path = 'cavity'
path_model = 'model/' + path
path_train_err = 'results/' + path + 'train.txt'
path_test_err = 'results/' + path + 'test.txt'
path_image = 'image/' + path
sub_s = 4
sub_t = 20
S = 256 // sub_s
T_in = 1000 # 1000*0.005 = 5s
T = 50 # 1000 + 50*20*0.005 = 10s
padding = 14
################################################################
# load data
################################################################
# 15s, 3000 frames
reader = MatReader(PATH)
data_u = reader.read_field('u')[T_in:T_in+T*sub_t:sub_t, ::sub_s, ::sub_s].permute(1,2,0)
data_v = reader.read_field('v')[T_in:T_in+T*sub_t:sub_t, ::sub_s, ::sub_s].permute(1,2,0)
data_output = torch.stack([data_u, data_v],dim=-1).reshape(batch_size,S,S,T,2)
data_input = data_output[:,:,:,:1,:].repeat(1,1,1,T,1).reshape(batch_size,S,S,T,2)
print(data_output.shape)
device = torch.device('cuda')
def PINO_loss_Fourier_f(out, Re=500):
pi = np.pi
Lx = 1*(S + padding-1)/S
Ly = 1*(S + padding-1)/S
Lt = (0.005*sub_t*T) *(T + padding)/T
nx = out.size(1)
ny = out.size(2)
nt = out.size(3)
device = out.device
# Wavenumbers in y-direction
k_x = torch.cat((torch.arange(start=0, end=nx//2, step=1, device=device),
torch.arange(start=-nx//2, end=0, step=1, device=device)), 0).reshape(nx, 1, 1).repeat(1, ny, nt).reshape(1,nx,ny,nt,1)
k_y = torch.cat((torch.arange(start=0, end=ny//2, step=1, device=device),
torch.arange(start=-ny//2, end=0, step=1, device=device)), 0).reshape(1, ny, 1).repeat(nx, 1, nt).reshape(1,nx,ny,nt,1)
k_t = torch.cat((torch.arange(start=0, end=nt//2, step=1, device=device),
torch.arange(start=-nt//2, end=0, step=1, device=device)), 0).reshape(1, 1, nt).repeat(nx, ny, 1).reshape(1,nx,ny,nt,1)
out_h = torch.fft.fftn(out, dim=[1, 2, 3])
outx_h = 1j * k_x * out_h * (2 * pi / Lx)
outy_h = 1j * k_y * out_h * (2 * pi / Ly)
outt_h = 1j * k_t * out_h * (2 * pi / Lt)
outxx_h = 1j * k_x * outx_h * (2 * pi / Lx)
outyy_h = 1j * k_y * outy_h * (2 * pi / Ly)
outx = torch.fft.irfftn(outx_h[:, :, :, :nt//2+1, :], dim=[1,2,3])[:,:S,:S,:T]
outy = torch.fft.irfftn(outy_h[:, :, :, :nt//2+1, :], dim=[1,2,3])[:,:S,:S,:T]
outt = torch.fft.irfftn(outt_h[:, :, :, :nt//2+1, :], dim=[1,2,3])[:,:S,:S,:T]
outxx = torch.fft.irfftn(outxx_h[:, :, :, :nt//2+1, :], dim=[1,2,3])[:,:S,:S,:T]
outyy = torch.fft.irfftn(outyy_h[:, :, :, :nt//2+1, :], dim=[1,2,3])[:,:S,:S,:T]
out = out[:,:S,:S,:T]
E1 = outt[..., 0] + out[..., 0]*outx[..., 0] + out[..., 1]*outy[..., 0] + outx[..., 2] - 1/Re*(outxx[..., 0] + outyy[..., 0])
E2 = outt[..., 1] + out[..., 0]*outx[..., 1] + out[..., 1]*outy[..., 1] + outy[..., 2] - 1/Re*(outxx[..., 1] + outyy[..., 1])
E3 = outx[..., 0] + outy[..., 1]
target = torch.zeros(E1.shape, device=E1.device)
E1 = F.mse_loss(E1,target)
E2 = F.mse_loss(E2,target)
E3 = F.mse_loss(E3,target)
return E1, E2, E3
def PINO_loss_FDM_f(out, Re=500):
dx = 1 / (S+2)
dy = 1 / (S+2)
dt = 0.005*sub_t
out = out[:,:S,:S,:T,:]
out = F.pad(out, [0,0, 1,0, 1,1, 1,1])
out[:, :, -1, :, 0] = 1
outx = (out[:,2:,1:-1,1:-1] - out[:,:-2,1:-1,1:-1]) / (2*dx)
outy = (out[:,1:-1,2:,1:-1] - out[:,1:-1,:-2,1:-1]) / (2*dy)
outt = (out[:,1:-1,1:-1,2:] - out[:,1:-1,1:-1,:-2]) / (2*dt)
outlap = (out[:,2:,1:-1,1:-1] + out[:,:-2,1:-1,1:-1] + out[:,1:-1,2:,1:-1] + out[:,1:-1,:-2,1:-1] - 4*out[:,1:-1,1:-1,1:-1]) / (dx*dy)
out = out[:,1:-1,1:-1,1:-1]
E1 = outt[..., 0] + out[..., 0]*outx[..., 0] + out[..., 1]*outy[..., 0] + outx[..., 2] - 1/Re*(outlap[..., 0])
E2 = outt[..., 1] + out[..., 0]*outx[..., 1] + out[..., 1]*outy[..., 1] + outy[..., 2] - 1/Re*(outlap[..., 1])
E3 = outx[..., 0] + outy[..., 1]
target = torch.zeros(E1.shape, device=E1.device)
E1 = F.mse_loss(E1,target)
E2 = F.mse_loss(E2,target)
E3 = F.mse_loss(E3,target)
return E1, E2, E3
def PINO_loss_ic(out, y):
myloss = LpLoss(size_average=True)
# target = torch.zeros(out.shape, device=out.device)
# target[:, :, -1, 0] = 1
# IC = myloss(out, target)
# return IC
IC = F.mse_loss(out, y)
return IC
def PINO_loss_bc(out, y):
myloss = LpLoss(size_average=True)
# target = torch.zeros((batch_size,S,T,2), device=out.device)
# target3 = torch.zeros((batch_size,S,T,2), device=out.device)
# target3[..., 0] = 1
# out = torch.stack([out[:,0,:], out[:,-1,:], out[:,:,-1], out[:,:,0]], -1)
# target = torch.stack([target, target, target3, target], -1)
# BC = myloss(out, target)
# return BC
BC1 = F.mse_loss(out[:,0,:], y[:,0,:])
BC2 = F.mse_loss(out[:,-1,:], y[:,-1,:])
BC3 = F.mse_loss(out[:,:,-1], y[:,:,-1])
BC4 = F.mse_loss(out[:,:,0], y[:,:,0])
return (BC1+BC2+BC3+BC4)/4
################################################################
# training and evaluation
################################################################
model = model = FNO3d(modes, modes, modes, width, padding).cuda()
print(count_params(model))
optimizer = Adam(model.parameters(), lr=0.0025, weight_decay=0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.5)
myloss = LpLoss(size_average=False)
model.train()
x = data_input.cuda().reshape(batch_size,S,S,T,2)
y = data_output.cuda().reshape(batch_size,S,S,T,2)
for ep in range(5000):
t1 = default_timer()
optimizer.zero_grad()
out = model(x)
loss_l2 = myloss(out[:,:S,:S,:T,:2], y)
IC = PINO_loss_ic(out[:,:S,:S,0,:2], y[:,:,:,0])
BC = PINO_loss_bc(out[:,:S,:S,:T,:2], y)
E1, E2, E3 = PINO_loss_Fourier_f(out)
# E1, E2, E3 = PINO_loss_FDM_f(out)
loss_pino = IC*1 + BC*1 + E1*1 + E2*1 + E3*1
loss_pino.backward()
optimizer.step()
scheduler.step()
t2 = default_timer()
print(ep, t2-t1, IC.item(), BC.item(), E1.item(), E2.item(), E3.item(), loss_l2.item())
if ep % 1000 == 500:
y_plot = y[0,:,:,:].cpu().numpy()
out_plot = out[0,:S,:S,:T].detach().cpu().numpy()
fig, ax = plt.subplots(2, 2)
ax[0,0].imshow(y_plot[..., -1, 0])
ax[0,1].imshow(y_plot[..., -1, 1])
ax[1,0].imshow(out_plot[..., -1, 0])
ax[1,1].imshow(out_plot[..., -1, 1])
plt.show()