-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_spec_visualization.py
executable file
·190 lines (158 loc) · 6.5 KB
/
run_spec_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import numpy.random as random
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import wasserstein_distance
font = {'size' : 28}
matplotlib.rc('font', **font)
import operator
from functools import reduce
from functools import partial
from timeit import default_timer
from utilities4 import *
torch.manual_seed(0)
np.random.seed(0)
T = 500
s = 256
S = s
Re = 5000
index = 1
T = 100
HOME_PATH = '../'
############################################################################
# RE500
# dataloader = MatReader(HOME_PATH+'pred/mno5000.mat')
# pretrain = torch.load(HOME_PATH+'pred/re500-1_8s-800-pino-140k-prediction.pt')
# pretrain_truth = pretrain['truth'].squeeze().permute(2,0,1)
# pretrain_pred = pretrain['pred'].squeeze().permute(2,0,1)
#
# finetune = torch.load(HOME_PATH+'pred/re500-1_8s-800-pino-1k-finetune-prediction.pt')
# finetune_truth = finetune['truth'].squeeze().permute(2,0,1)
# finetune_pred = finetune['pred'].squeeze().permute(2,0,1)
#
# fno = torch.load(HOME_PATH+'pred/re500-1_8s-800-fno-50k-prediction.pt')
# fno_truth = fno['truth'].squeeze().permute(2,0,1)
# fno_pred = fno['pred'].squeeze().permute(2,0,1)
#
# fno = torch.load(HOME_PATH+'pred/prediction_unet.pt')
# unet_truth = fno['truth'].squeeze().permute(2,0,1)
# unet_pred = fno['pred'].squeeze().permute(2,0,1)
finetune = torch.load(HOME_PATH+'pred/pino-Re500-1_8s-eval.pt')
finetune_truth = finetune['truth'].squeeze().permute(0,3,1,2)
finetune_pred = finetune['pred'].squeeze().permute(0,3,1,2)
fno = torch.load(HOME_PATH+'pred/fno-Re500-1_8-eval.pt')
fno_truth = fno['truth'].squeeze().permute(0,3,1,2)
fno_pred = fno['pred'].squeeze().permute(0,3,1,2)
fno = torch.load(HOME_PATH+'pred/prediction_50unet.pt')
unet_truth = fno['truth'].squeeze().permute(0,3,1,2)
unet_pred = fno['pred'].squeeze().permute(0,3,1,2)
shape = fno_pred.shape
print(fno_pred.shape, unet_pred.shape)
unet_pred_low = unet_pred.unsqueeze(1)
batchsize, size_x, size_y, size_z = 1, shape[0], shape[1], shape[2]
gridx = torch.tensor(np.linspace(-1, 1, size_x), dtype=torch.float)
gridx = gridx.reshape(1, size_x, 1, 1, 1).repeat([batchsize, 1, size_y, size_z, 1])
gridy = torch.tensor(np.linspace(-1, 1, size_y), dtype=torch.float)
gridy = gridy.reshape(1, 1, size_y, 1, 1).repeat([batchsize, size_x, 1, size_z, 1])
gridz = torch.tensor(np.linspace(-1, 1, size_z), dtype=torch.float)
gridz = gridz.reshape(1, 1, 1, size_z, 1).repeat([batchsize, size_x, size_y, 1, 1])
grid = torch.cat((gridx, gridy, gridz), dim=-1)
# fno_pred_interp = F.grid_sample(fno_pred_low, grid, mode='bilinear', padding_mode='border', align_corners=False).squeeze()
unet_pred_interp = F.interpolate(unet_pred_low, shape[1:], mode='trilinear').squeeze()
# fno_pred_interp = fno_pred_low.squeeze()
# plt.imshow(fno_truth[-1].numpy())
# plt.savefig('truth.png')
# plt.imshow(fno_pred[-1].numpy())
# plt.savefig('fno.png')
fno_error = np.abs(fno_pred[-1].numpy() - fno_truth[-1].numpy())
# plt.imshow(fno_error, vmax=5)
# plt.savefig('fno_error.png')
# plt.imshow(unet_pred_low[0,0,-1].numpy())
# plt.savefig('unet_low.png')
# plt.imshow(unet_pred_interp[-1].numpy())
# plt.savefig('unet_interp.png')
interp_error = np.abs(unet_pred_interp[-1].numpy() - fno_truth[-1].numpy())
# plt.imshow(interp_error, vmax=5)
# plt.savefig('unet_interp_error.png')
print(np.max(fno_error), np.max(interp_error))
# ##############################################################
### FFT plot
##############################################################
def spectrum2(u):
T = u.shape[0]
u = u.reshape(T, s, s)
# u = torch.rfft(u, 2, normalized=False, onesided=False)
u = torch.fft.fft2(u)
# ur = u[..., 0]
# uc = u[..., 1]
# 2d wavenumbers following Pytorch fft convention
k_max = s // 2
wavenumers = torch.cat((torch.arange(start=0, end=k_max, step=1), \
torch.arange(start=-k_max, end=0, step=1)), 0).repeat(s, 1)
k_x = wavenumers.transpose(0, 1)
k_y = wavenumers
# Sum wavenumbers
sum_k = torch.abs(k_x) + torch.abs(k_y)
sum_k = sum_k.numpy()
# Remove symmetric components from wavenumbers
index = -1.0 * np.ones((s, s))
index[0:k_max + 1, 0:k_max + 1] = sum_k[0:k_max + 1, 0:k_max + 1]
spectrum = np.zeros((T, s))
for j in range(1, s + 1):
ind = np.where(index == j)
# spectrum[:, j - 1] = np.sqrt((ur[:, ind[0], ind[1]].sum(axis=1)) ** 2
# + (uc[:, ind[0], ind[1]].sum(axis=1)) ** 2)
spectrum[:, j - 1] = (u[:, ind[0], ind[1]].sum(axis=1)).abs() ** 2
spectrum = spectrum.mean(axis=0)
return spectrum
frame = 64
# pred_sp = spectrum2(pretrain_pred[0:frame+1])
# truth_sp = spectrum2(pretrain_truth[0:frame+1])
# finetune_sp = spectrum2(finetune_pred[0:frame+1])
# fno_sp = spectrum2(fno_pred[0:frame+1])
# unet_interp_sp = spectrum2(unet_pred_interp[0:frame+1])
# pred_sp = spectrum2(pretrain_pred.reshape(50*65, 256,256))
truth_sp = spectrum2(fno_truth.reshape(50*65, 256,256))
finetune_sp = spectrum2(finetune_pred.reshape(50*65, 256,256))
fno_sp = spectrum2(fno_pred.reshape(50*65, 256,256))
unet_interp_sp = spectrum2(unet_pred_interp.reshape(50*65, 256,256))
np.save('truth_sp.npy', truth_sp)
np.save('pino_finetune_sp.npy', finetune_sp)
np.save('fno_sp.npy', fno_sp)
np.save('unet_interp_sp.npy', unet_interp_sp)
# print(pred_sp.shape)
fig, ax = plt.subplots(figsize=(10,10))
linewidth = 3
ax.set_yscale('log')
# ax.set_xscale('log')
length = 128
k = np.arange(length) * 1.0
k3 = k**-3 * 100000000000
k5 = k**-(5/3) * 5000000000
# ax.plot(pred_sp, 'r', label="pino", linewidth=linewidth)
ax.plot(unet_interp_sp, 'r', label="NN+Interpolation", linewidth=linewidth)
ax.plot(fno_sp, 'b', label="FNO", linewidth=linewidth)
ax.plot(finetune_sp, 'g', label="PINO", linewidth=linewidth)
ax.plot(truth_sp, 'k', linestyle=":", label="Ground Truth", linewidth=4)
ax.axvline(x=32, color='grey', linestyle='--', linewidth=linewidth)
# ax.plot(k, k5, 'k--', label="k^-5/3 scaling", linewidth=linewidth)
# ax.set_xlim(1,length)
ax.set_xlim(1,80)
# ax.set_ylim(1,10000000000)
ax.set_ylim(10000,10000000000)
# ax.set_yticks([0.05,0.10,0.15])
plt.legend(prop={'size': 20})
# plt.title('averaged over t=[0,'+str(frame)+']' )
plt.title('spectrum of Kolmogorov Flows' )
plt.xlabel('wavenumber')
plt.ylabel('energy')
leg = plt.legend(loc='best')
leg.get_frame().set_alpha(0.5)
# plt.show()
# plt.savefig('re5000-sp-truth-t'+str(frame)+'.png')
plt.savefig('ifno_spectrum.png')