-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path0279-perfect-squares.java
48 lines (43 loc) · 1.61 KB
/
0279-perfect-squares.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Solution {
public int numSquares(int n) {
int[] dp = new int[n+1];
Arrays.fill(dp, n);
dp[0] = 0;
for(int target = 0; target < n + 1; target++){
for(int s = 0; s < target; s++){
int square = s*s;
if(target - square < 0)
break;
dp[target] = Math.min(dp[target], 1 + dp[target - square]);
}
}
return dp[n];
}
}
/*---------------------------------------------------------------------------------------------------------------------------------------------------------*/
//This is a BFS based approach.
//We can also do this problem similar to coin change but the Time and space complexity will remain same (Just an extra queue in this one stil linear space).
class Solution {
public int numSquares(int n) {
Queue<Integer> q = new LinkedList<>();
//add visited array so we don't go to values which we have traversed already (similar to dp) otherwise this will give tle
HashSet<Integer> visited = new HashSet<>();
int ans = 0;
q.offer(n);
while (!q.isEmpty()) {
int size = q.size();
for (int i = 0; i < size; i++) {
int cur = q.poll();
if (cur == 0) return ans;
for (int j = 1; j <= cur / j; j++) {
if (!visited.contains(cur - j * j)) {
q.offer(cur - j * j);
visited.add(cur - j * j);
}
}
}
ans++;
}
return -1;
}
}