We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi Author. Thank you for the great work at first. I get a issue when training your pretrained model on megadepth, I find the loss is negative.
Here's the training scripts I used:
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m torch.distributed.run --nproc_per_node=4 train.py --train_dataset "68_400 @ MegaDepth(ROOT='megadepth', split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5)" --test_dataset "1_000 @ MegaDepth(ROOT='megadepth', split='val', resolution=(512,336), seed=777, n_corres=1024)" --model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))" --train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)" --test_criterion "Regr3D(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)" --pretrained "/checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth" --lr 0.0001 --min_lr 1e-06 --warmup_epochs 8 --epochs 50 --batch_size 2 --accum_iter 2 --save_freq 1 --keep_freq 5 --eval_freq 1 --print_freq=10 --disable_cudnn_benchmark --output_dir "checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"
Is the negative loss caused by my training set up or it's normal?
The text was updated successfully, but these errors were encountered:
1: yes negative confidence loss is normal 2: note that you are not training with the matching loss, but it's there in the validation.
Sorry, something went wrong.
No branches or pull requests
Hi Author. Thank you for the great work at first.
I get a issue when training your pretrained model on megadepth, I find the loss is negative.
Here's the training scripts I used:
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m torch.distributed.run --nproc_per_node=4 train.py
--train_dataset "68_400 @ MegaDepth(ROOT='megadepth', split='train', resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)], aug_crop='auto', aug_monocular=0.005, transform=ColorJitter, n_corres=8192, nneg=0.5)"
--test_dataset "1_000 @ MegaDepth(ROOT='megadepth', split='val', resolution=(512,336), seed=777, n_corres=1024)"
--model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))"
--train_criterion="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)"
--test_criterion "Regr3D(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + -1.*MatchingLoss(APLoss(nq='torch', fp=torch.float16), negatives_padding=12288)"
--pretrained "/checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth"
--lr 0.0001 --min_lr 1e-06 --warmup_epochs 8 --epochs 50 --batch_size 2 --accum_iter 2
--save_freq 1 --keep_freq 5 --eval_freq 1 --print_freq=10 --disable_cudnn_benchmark
--output_dir "checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"
Is the negative loss caused by my training set up or it's normal?
The text was updated successfully, but these errors were encountered: