-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathendemic.py
138 lines (88 loc) · 3.71 KB
/
endemic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#Libraries
import geopandas as gpd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import rasterio
from rasterio.mask import mask
from rasterio.plot import show
from glob import glob
import os
#Function for zonal stats
def getFeatures(gdf):
"""Function to parse features from GeoDataFrame in such a manner that rasterio wants them"""
import json
return [json.loads(gdf.to_json())['features'][0]['geometry']]
#Non user specified data files
lulc_map_file = '/home/groups/gdaily/global2/ESA_landcover/lulc.tif'
aoi_file = '/scratch/PI/gdaily/Jeff/worldBank/Data/countries_iso3.shp'
bird_files = '/home/groups/gdaily/global2/BOTW.gdb'
reptile_files = '/home/groups/gdaily/global2/reptileRangeMaps/REPTILES.shp'
amphibian_files = '/home/groups/gdaily/global2/amphibianRangeMaps/AMPHIBIANS.shp'
mammal_files = '/home/groups/gdaily/global2/mammalRangeMaps/MAMMALS.shp'
outputDirectory = '/scratch/PI/gdaily/Jeff/worldBank/Results2'
#Read in area of interest
aoi_base = gpd.read_file(aoi_file)
countryList = pd.unique(aoi_base['nev_name'])
for country in countryList:
#Directory Management
countryDirectory = str(outputDirectory + '/' + str(country) + '/')
if not os.path.exists(countryDirectory):
os.makedirs(countryDirectory)
aoi = aoi_base[aoi_base['nev_name'] == country]
aoi = aoi.dissolve(by = 'nev_name')
coords = getFeatures(aoi)
#Read in land cover map and clip land cover map
lulc_map = rasterio.open(lulc_map_file)
lulc_raw, lulc_affine = mask(lulc_map, shapes=coords, crop=True)
lulc_raw = lulc_raw[0,:,:]
#Rasterize shapefiles
def speciesRichness(file, name):
#Make a data frame to hold summary statistics for red list species
subRL = pd.DataFrame()
#Read in data files the try except handles differences in file formats across taxa
try:
shapeFiles = gpd.read_file(file, layer='All_Spp', bbox = tuple(aoi.total_bounds))
species = pd.unique(shapeFiles['SCINAME'])
except:
shapeFiles = gpd.read_file(file, bbox = tuple(aoi.total_bounds))
species = pd.unique(shapeFiles['binomial'])
#Make a base array to calculate your regional species pool
outArray = np.zeros(shape = [int(lulc_raw.shape[0]), int(lulc_raw.shape[1])])
#Loop through speices and rasterize them
for i in species:
try:
sub = shapeFiles[shapeFiles['SCINAME'] == i]
except:
sub = shapeFiles[shapeFiles['binomial'] == i]
#Add each species binary occurance to your species pool
range = sub['SHAPE_Area']
sub = rasterio.features.rasterize(shapes=sub['geometry'],
out_shape=tuple([int(lulc_raw.shape[0]), int(lulc_raw.shape[1])]),
transform=lulc_affine, dtype = np.int16, all_touched = True)
sub[sub >1] = 1.0
sub = sub / range
outArray += sub
#Clean up our species pool and return it to our dictionary
outArray = np.nan_to_num(outArray)
outArray = np.where(lulc_raw > 0, outArray, np.nan)
outArray = outArray.astype('float32')
with rasterio.Env():
profile = lulc_map.profile
profile = {k: v for k, v in lulc_map.profile.items() if k not in ['blockxsize', 'blockysize']}
profile.update(
dtype=rasterio.float32,
count=1,
driver="GTiff",
height=lulc_raw.shape[0],
width=lulc_raw.shape[1],
transform=lulc_affine)
print(profile)
print(outArray.shape)
with rasterio.open(str(countryDirectory + name + '.tif'), 'w', **profile, tile = False) as dst:
dst.write_band(1,outArray)
speciesRichness(amphibian_files, 'AmphibiansEndemic')
speciesRichness(bird_files, 'BirdsEndemic')
speciesRichness(mammal_files, 'MammalsEndemic')
speciesRichness(reptile_files, 'ReptilesEndemic')