-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
120 lines (110 loc) · 4.75 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Evaluation script for Nerf."""
import os
import functools
import gin
import numpy as np
import time
import torch
from torch.utils.tensorboard import SummaryWriter
from nerf import datasets
from nerf import models
from nerf import utils
def main(args):
gin.parse_config_file(args.gin_file)
device = "cuda" if torch.cuda.is_available() else "cpu"
utils.set_random_seed(20210222)
torch.autograd.set_detect_anomaly(True)
print('* Load test data')
dataset = datasets.get_dataset("test", args)
print('* Load model')
model, state = models.get_model_state(args, device=device, restore=False)
print('* Done loading model')
last_step = 0
out_dir = os.path.join(
args.train_dir, "path_renders" if dataset.render_path else "test_preds"
)
if not args.eval_once:
summary_writer = SummaryWriter(os.path.join(args.train_dir, "eval"))
while True:
try:
model, state = models.restore_model_state(args, model, state)
except Exception as e: # train.py is saving state just now.
print(e); time.sleep(30); continue
step = int(state.step)
if step <= last_step:
time.sleep(30); continue
if not os.path.isdir(out_dir):
os.makedirs(out_dir, exist_ok=True)
psnrs = []
ssims = []
for idx in range(dataset.size):
print(f"Evaluating {idx+1}/{dataset.size}")
batch = next(dataset)
rays = utils.namedtuple_map(
lambda z: torch.from_numpy(z.copy()).to(device), batch["rays"])
# Rendering is forced to be deterministic even if training was randomized, as
# this eliminates "speckle" artifacts.
with torch.no_grad():
pred_color, pred_disp, pred_acc = utils.render_image(
functools.partial(model, randomized=False),
rays,
'llff' in args.data_dir.lower(),
chunk=args.chunk,
)
if not dataset.render_path:
gt_color = torch.from_numpy(batch["pixels"]).to(device)
psnr = utils.compute_psnr(pred_color, gt_color).mean().cpu().item()
ssim = utils.compute_ssim(pred_color, gt_color).mean().cpu().item()
print(f"PSNR = {psnr:.4f}, SSIM = {ssim:.4f}")
psnrs.append(float(psnr))
ssims.append(float(ssim))
pred_color = pred_color.cpu().numpy()
pred_disp = pred_disp.cpu().numpy()
pred_acc = pred_acc.cpu().numpy()
if not args.eval_once and idx == args.showcase_index:
showcase_color = pred_color
showcase_disp = pred_disp
showcase_acc = pred_acc
if not dataset.render_path:
showcase_gt = batch["pixels"]
utils.save_img(pred_color, os.path.join(out_dir, "{:03d}.png".format(idx)))
utils.save_img(
pred_disp[Ellipsis, 0],
os.path.join(out_dir, "disp_{:03d}.png".format(idx)),
)
if not args.eval_once:
summary_writer.add_image("pred_color", showcase_color, step, None, 'HWC')
summary_writer.add_image("pred_disp", showcase_disp, step, None, 'HWC')
summary_writer.add_image("pred_acc", showcase_acc, step, None, 'HWC')
if not dataset.render_path:
summary_writer.add_scalar("psnr", np.mean(np.array(psnrs)), step)
summary_writer.add_scalar("ssim", np.mean(np.array(ssims)), step)
summary_writer.add_image("target", showcase_gt, step, None, 'HWC')
if not dataset.render_path:
with open(os.path.join(out_dir, "psnr.txt"), "w") as pout:
pout.write("{}".format(np.mean(np.array(psnrs))))
with open(os.path.join(out_dir, "ssim.txt"), "w") as pout:
pout.write("{}".format(np.mean(np.array(ssims))))
if args.eval_once:
break
if int(step) >= args.max_steps:
break
last_step = step
if __name__ == "__main__":
args = utils.define_args()
main(args)