forked from aadm/geophysical_notes
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathavo_explorer_library.py
345 lines (319 loc) · 13.8 KB
/
avo_explorer_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# python support library for AVO Explorer Jupyter notebook
# all functions unless noticed written by Alessandro Amato del Monte, 2016
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# -----------------------------------------------------------------------------
# classes I,II,III defined in Hilterman, Seismic Amplitude Interpretation (2001), SEG-EAGE Distinguished Instructor Short Course
# class IV defined in Castagna, J. P., and H. W. Swan, 1997, Principles of AVO crossplotting: The Leading Edge.
shale = np.array([[3094,1515,2.40], [2643,1167,2.29], [2192,818,2.16], [3240,1620,2.34]])
ssgas = np.array([[4050,2526,2.21,.2], [2781,1665,2.08,.25], [1542,901,1.88,.33], [1650,1090,2.07,.18]])
ssbri = np.array([[4115,2453,2.32,.2], [3048,1595,2.23,.25], [2134,860,2.11,.33], [2590,1060,2.21,.18]])
avocl=['class 1','class 2','class 3','class 4']
# -----------------------------------------------------------------------------
def ricker(f, length, dt):
'''
(taken from https://github.com/seg/tutorials-2014/blob/master/1406_Make_a_synthetic/how_to_make_synthetic.ipynb)
(author: Evan Bianco)
'''
t = np.linspace(-length/2, (length-dt)/2, int(length/dt))
y = (1. - 2.*(np.pi**2)*(f**2)*(t**2))*np.exp(-(np.pi**2)*(f**2)*(t**2))
return t, y
# -----------------------------------------------------------------------------
def gassmann(vp1, vs1, rho1, rho_fl1, k_fl1, rho_fl2, k_fl2, k0, phi):
'''
written by Alessandro Amato del Monte, 2016
'''
vp1 = vp1/1000
vs1 = vs1/1000
rho2 = rho1-phi*rho_fl1+phi*rho_fl2
mu1 = rho1*vs1**2.
k1 = rho1*vp1**2-(4./3.)*mu1
kdry= (k1 * ((phi*k0)/k_fl1+1-phi)-k0) / ((phi*k0)/k_fl1+(k1/k0)-1-phi)
k2 = kdry + (1- (kdry/k0))**2 / ( (phi/k_fl2) + ((1-phi)/k0) - (kdry/k0**2) )
mu2 = mu1
vp2 = np.sqrt(((k2+(4./3)*mu2))/rho2)
vs2 = np.sqrt((mu2/rho2))
return [vp2*1000, vs2*1000, rho2, k2, kdry]
# -----------------------------------------------------------------------------
def ruger(vp1,vs1,rho1,d1,e1,vp2,vs2,rho2,d2,e2,theta):
'''
written by Alessandro Amato del Monte, 2016
'''
a = np.radians(theta)
vp = np.mean([vp1,vp2])
vs = np.mean([vs1,vs2])
rho = np.mean([rho1,rho2])
z = np.mean([vp1*rho1,vp2*rho2])
g = np.mean([rho1*vs1**2,rho2*vs2**2])
dvp = vp2-vp1
dvs = vs2-vs1
drho = rho2-rho1
z2, z1 = vp2*rho2, vp1*rho1
dz = z2-z1
dg = rho2*vs2**2 - rho1*vs1**2
dd = d2-d1
de = e2-e1
A = 0.5*(dz/z)
B = 0.5*(dvp/vp - (2*vs/vp)**2 * (dg/g) + dd) * np.sin(a)**2
C = 0.5*(dvp/vp + de) * np.sin(a)**2 * np.tan(a)**2
R = A+B+C
return R
# -----------------------------------------------------------------------------
def shuey(vp1, vs1, rho1, vp2, vs2, rho2, theta, approx=True, terms=False):
'''
shuey (C) aadm 2016
Calculates P-wave reflectivity with Shuey's equation
reference:
Avseth et al. (2005), Quantitative Seismic Interpretation, Cambridge University Press (p.182)
INPUT
vp1, vs1, rho1: P-, S-wave velocity (m/s) and density (g/cm3) of upper medium
vp2, vs2, rho2: P-, S-wave velocity (m/s) and density (g/cm3) of lower medium
theta: angle of incidence (degree)
approx: returns approximate (2-term) form (default: True)
terms: returns reflectivity, intercept and gradient (default: False)
OUTPUT
reflectivity (and optionally intercept, gradient; see terms option) at angle theta
'''
a = np.radians(theta)
dvp = vp2-vp1
dvs = vs2-vs1
drho = rho2-rho1
vp = np.mean([vp1,vp2])
vs = np.mean([vs1,vs2])
rho = np.mean([rho1,rho2])
R0 = 0.5*(dvp/vp + drho/rho)
G = 0.5*(dvp/vp) - 2*(vs**2/vp**2)*(drho/rho+2*(dvs/vs))
F = 0.5*(dvp/vp)
if approx:
R = R0 + G*np.sin(a)**2
else:
R = R0 + G*np.sin(a)**2 + F*(np.tan(a)**2-np.sin(a)**2)
if terms:
return R,R0,G
else:
return R
# -----------------------------------------------------------------------------
def akirichards(vp1, vs1, rho1, vp2, vs2, rho2, theta):
'''
Aki-Richards (C) aadm 2017
Calculates P-wave reflectivity with Aki-Richards approximate equation
only valid for small layer contrasts.
reference:
Mavko et al. (2009), The Rock Physics Handbook, Cambridge University Press (p.182)
INPUT
vp1, vs1, rho1: P-, S-wave velocity (m/s) and density (g/cm3) of upper medium
vp2, vs2, rho2: P-, S-wave velocity (m/s) and density (g/cm3) of lower medium
theta: angle of incidence (degree)
OUTPUT
reflectivity at angle theta
'''
a = np.radians(theta)
p = np.sin(a)/vp1
dvp = vp2-vp1
dvs = vs2-vs1
drho = rho2-rho1
vp = np.mean([vp1,vp2])
vs = np.mean([vs1,vs2])
rho = np.mean([rho1,rho2])
A = 0.5*(1-4*p**2*vs**2)*drho/rho
B = 1/(2*np.cos(a)**2) * dvp/vp
C = 4*p**2*vs**2*dvs/vs
R = A + B - C
return R
# -----------------------------------------------------------------------------
def make_avoclasses(brine=False):
'''
written by Alessandro Amato del Monte, 2016
'''
ang = np.arange(0,50,1)
cc = ['m','c','r','g']
f,ax=plt.subplots(1,2, figsize=(10, 5))
if brine:
print('In the Intercept-Gradient crossplot, circles are gas sands, squares are brine sands.')
for i, val in enumerate(avocl):
amp0 = shuey(shale[i,0],shale[i,1],shale[i,2],ssbri[i,0],ssbri[i,1],ssbri[i,2],ang)
amp1 = shuey(shale[i,0],shale[i,1],shale[i,2],ssgas[i,0],ssgas[i,1],ssgas[i,2],ang)
tmp0 = shuey(shale[i,0],shale[i,1],shale[i,2],ssbri[i,0],ssbri[i,1],ssbri[i,2],30,terms=True)
tmp1 = shuey(shale[i,0],shale[i,1],shale[i,2],ssgas[i,0],ssgas[i,1],ssgas[i,2],30,terms=True)
Ib, Gb = tmp0[1],tmp0[2]
Ig, Gg = tmp1[1],tmp1[2]
ax[0].plot(ang, amp1, color=cc[i], lw=2, ls='-', label=val+' (gas)')
ax[0].axhline(0, color='k')
ax[0].set_xlabel('angle of incidence'), ax[0].set_ylabel('amplitude')
ax[0].set_xlim(0, 40)
ax[0].text(2,amp1[0]-.02,avocl[i], style='italic', fontsize=10, ha='left', va='top')
ax[1].plot(Ig, Gg, color=cc[i], marker='o', ms=10, label=val+' (gas)')
ax[1].axhline(0, color='k'), ax[1].axvline(0, color='k')
ax[1].set_xlabel('intercept'), ax[1].set_ylabel('gradient')
ax[1].set_xlim(-.5, .5)
if brine:
ax[0].plot(ang, amp0, color=cc[i], lw=2, ls='--', label=val+' (brine)')
ax[1].plot(Ib, Gb, color=cc[i], marker='s', ms=10, label=val+' (brine)')
# draw avo classes areas
cl1_area = patches.Rectangle((0.02,-1),.98,1,edgecolor='None',facecolor='m',alpha=0.2)
cl2_area = patches.Rectangle((-0.02,-1),.04,2,edgecolor='None',facecolor='c',alpha=0.2)
cl3_area = patches.Rectangle((-1,-1),.98,1,edgecolor='None',facecolor='r',alpha=0.2)
cl4_area = patches.Rectangle((-1,0),.98,1,edgecolor='None',facecolor='g',alpha=0.2)
for aa in ax:
aa.grid()
aa.set_ylim(-.5, .5)
background = patches.Polygon([[-1, 1], [1, -1], [1, 1]],facecolor='w')
ax[1].add_patch(cl1_area)
ax[1].add_patch(cl2_area)
ax[1].add_patch(cl3_area)
ax[1].add_patch(cl4_area)
ax[1].add_patch(background)
ax[1].text(.15,-.3,'Class 1',ha='center',va='center',color='m',style='italic')
ax[1].text(0,-.25,'Class 2/2p',ha='center',va='center', color='c',style='italic')
ax[1].text(-.35,-.3,'Class 3',ha='center',va='center', color='r',style='italic')
ax[1].text(-.35,.15,'Class 4',ha='center',va='center', color='g',style='italic')
# -----------------------------------------------------------------------------
def avomod1(vp1=3094,vs1=1515,rho1=2.40,vp2=4099,vs2=2529,rho2=2.18,angmin=0,angmax=30,polarity='normal',black=False,mx=0.5):
'''
written by Alessandro Amato del Monte, 2016
'''
n_samples = 500
gain = 10
interface = int(n_samples/2)
ang = np.arange(angmin,angmax+1,1)
z = np.arange(n_samples)
# build Ip and Vp/Vs logs
ip,vpvs = (np.zeros(n_samples) for _ in range(2))
ip[:interface] = vp1*rho1
ip[interface:] = vp2*rho2
vpvs[:interface] = vp1/vs1
vpvs[interface:]= vp2/vs2
# calculate avo curve, intercept and gradient
avo = shuey(vp1,vs1,rho1,vp2,vs2,rho2,ang)
_,I,G = shuey(vp1,vs1,rho1,vp2,vs2,rho2,30,terms=True)
# create synthetic gather
_,wavelet = ricker(f=10, length=.250, dt=0.001)
if polarity is not 'normal':
avo *= -1
# builds prestack gather model
rc, syn = (np.zeros((n_samples,ang.size)) for _ in range(2))
rc[interface,:] = avo
for i in range(ang.size):
syn[:,i] = np.convolve(rc[:,i],wavelet,mode='same')
# do the plot
f = plt.subplots(figsize=(10, 5))
ax0 = plt.subplot2grid((1,7), (0,0), colspan=1)
ax1 = plt.subplot2grid((1,7), (0,1), colspan=1)
ax2 = plt.subplot2grid((1,7), (0,2), colspan=1)
ax3 = plt.subplot2grid((1,7), (0,3), colspan=2)
ax4 = plt.subplot2grid((1,7), (0,5), colspan=2)
ax0.plot(ip, z, '-k', lw=4)
ax0.set_xlabel('AI [m/s*g/cc]')
ax0.margins(x=0.5)
ax1.plot(vpvs, z, '-k', lw=4)
ax1.set_xlabel('Vp/Vs')
ax1.margins(x=0.5)
opz1={'color':'k','linewidth':2}
opz2={'linewidth':0, 'alpha':0.6}
for i in range(0, ang.size,10):
trace=gain*syn[:,i] / np.max(np.abs(syn))
ax2.plot(i+trace,z,**opz1)
if black==False:
ax2.fill_betweenx(z,trace+i,i,where=trace+i>i,facecolor=[0.6,0.6,1.0],**opz2)
ax2.fill_betweenx(z,trace+i,i,where=trace+i<i,facecolor=[1.0,0.7,0.7],**opz2)
else:
ax2.fill_betweenx(z,trace+i,i,where=trace+i>i,facecolor='black',**opz2)
ax2.set_xticklabels([])
ax2.margins(x=0.05)
ax3.plot(ang, avo,'-k', lw=4)
ax3.axhline(0, color='k', lw=1)
ax3.set_xlabel('angle of incidence')
ax3.set_ylim(-mx,mx)
ax4.plot(I,G,'ko',ms=10,mfc='none',mew=2)
ax4.axhline(0, color='k', lw=1), ax4.axvline(0, color='k', lw=1)
ax4.set_xlabel('intercept'), ax4.set_ylabel('gradient')
ax4.set_xlim(-mx,mx), ax4.set_ylim(-mx,mx)
ax4.xaxis.set_label_position('top'), ax4.xaxis.tick_top()
ax4.yaxis.set_label_position('right'), ax4.yaxis.tick_right()
for aa in [ax0, ax1, ax2]:
aa.invert_yaxis()
aa.xaxis.tick_top()
plt.setp(aa.xaxis.get_majorticklabels(), rotation=90, fontsize=8)
aa.set_yticklabels([])
plt.tight_layout()
# -----------------------------------------------------------------------------
def avomod2(vp1,vs1,rho1,vp2A,vs2A,rho2A,vp2B,vs2B,rho2B,angmin=0,angmax=30):
'''
written by Alessandro Amato del Monte, 2016
'''
n_samples = 500
interface = int(n_samples/2)
ang = np.arange(angmin,angmax+1,1)
z = np.arange(n_samples)
# builds Ip and Vp/Vs logs
ipA,ipB,vpvsA,vpvsB = (np.zeros(n_samples) for _ in range(4))
ipA[:interface] = vp1*rho1
ipA[interface:] = vp2A*rho2A
ipB[:interface] = vp1*rho1
ipB[interface:] = vp2B*rho2B
vpvsA[:interface] = vp1/vs1
vpvsA[interface:] = vp2A/vs2A
vpvsB[:interface] = vp1/vs1
vpvsB[interface:] = vp2B/vs2B
# calculates avo curve, intercept and gradient
avoA = shuey(vp1,vs1,rho1,vp2A,vs2A,rho2A,ang)
avoB = shuey(vp1,vs1,rho1,vp2B,vs2B,rho2B,ang)
tmp0 = shuey(vp1,vs1,rho1,vp2A,vs2A,rho2A,30,terms=True)
IA, GA = tmp0[1],tmp0[2]
tmp0= shuey(vp1,vs1,rho1,vp2B,vs2B,rho2B,30,terms=True)
IB, GB = tmp0[1],tmp0[2]
# do the plot
f = plt.subplots(figsize=(10, 5))
ax0 = plt.subplot2grid((1,6), (0,0), colspan=1)
ax1 = plt.subplot2grid((1,6), (0,1), colspan=1)
ax2 = plt.subplot2grid((1,6), (0,2), colspan=2)
ax3 = plt.subplot2grid((1,6), (0,4), colspan=2)
ax0.plot(ipB, z, '-r', lw=4)
ax0.plot(ipA, z, '-k', lw=4)
ax0.set_xlabel('AI [m/s*g/cc]')
ax0.margins(x=0.5)
ax1.plot(vpvsB, z, '-r', lw=4)
ax1.plot(vpvsA, z, '-k', lw=4)
ax1.set_xlabel('Vp/Vs')
ax1.margins(x=0.5)
ax2.plot(ang, avoB,'-r', lw=4)
ax2.plot(ang, avoA,'-k', lw=4)
ax2.axhline(0, color='k', lw=1)
ax2.set_xlabel('angle of incidence')
ax2.margins(y=0.5)
ax3.plot(IB,GB,'ro',ms=15,mfc='r',mew=1)
ax3.plot(IA,GA,'ko',ms=15,mfc='k',mew=1)
ax3.axhline(0, color='k', lw=1), ax3.axvline(0, color='k', lw=1)
ax3.set_xlabel('intercept'), ax3.set_ylabel('gradient')
ax3.margins(0.5)
ax3.xaxis.set_label_position('top'), ax3.xaxis.tick_top()
ax3.yaxis.set_label_position('right'), ax3.yaxis.tick_right()
for aa in [ax0, ax1]:
aa.invert_yaxis()
aa.xaxis.tick_top()
plt.setp(aa.xaxis.get_majorticklabels(), rotation=90, fontsize=8)
aa.set_yticklabels([])
plt.tight_layout()
# -----------------------------------------------------------------------------
def make_avo_explorer(avoclass=3, fluid='gas', phimod=0.0):
'''
written by Alessandro Amato del Monte, 2016
'''
shale = np.array([[3094,1515,2.40], [2643,1167,2.29], [2192,818,2.16], [3240,1620,2.34]])
ssbri = np.array([[4115,2453,2.32,.2], [3048,1595,2.23,.25], [2134,860,2.11,.33], [2590,1060,2.21,.18]])
vp1,vs1,rho1=shale[avoclass-1,0],shale[avoclass-1,1],shale[avoclass-1,2]
vp2,vs2,rho2=ssbri[avoclass-1,0],ssbri[avoclass-1,1],ssbri[avoclass-1,2]
phi2 = ssbri[avoclass-1,3]+phimod
# elastic parameters for toy-fluid replacement
k0 = 37.00
rhob, kb = 1.09, 2.20
if fluid is 'gas':
rhof_new, kf_new = 0.40, 0.02 # gas density & bulk modulus
else:
rhof_new, kf_new = 0.80, 1.02 # oil density & bulk modulus
vp2B,vs2B,rho2B,_,_=gassmann(vp2, vs2, rho2, rhob, kb, rhof_new, kf_new, k0, phi2)
print('Shale: Vp={:.0f}, Vs={:.0f}, rho={:.2f}'.format(vp1,vs1,rho1))
print('Sand (brine): Vp={:.0f}, Vs={:.0f}, rho={:.2f}, porosity={:.2f}'.format(vp2,vs2,rho2,phi2))
print('Sand ({:s}): Vp={:.0f}, Vs={:.0f}, rho={:.2f}'.format(fluid,vp2B,vs2B,rho2B))
avomod2(vp1,vs1,rho1,vp2,vs2,rho2,vp2B,vs2B,rho2B,angmin=0,angmax=30)