-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathlists.pl
540 lines (475 loc) · 14.5 KB
/
lists.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/**
List manipulation predicates
*/
:- module(lists, [member/2, select/3, append/2, append/3, foldl/4, foldl/5,
memberchk/2, reverse/2, length/2, maplist/2,
maplist/3, maplist/4, maplist/5, maplist/6,
maplist/7, maplist/8, maplist/9, same_length/2, nth0/3, nth0/4, nth1/3, nth1/4,
sum_list/2, transpose/2, list_to_set/2, list_max/2,
list_min/2, permutation/2]).
/* Author: Mark Thom, Jan Wielemaker, and Richard O'Keefe
Copyright (c) 2018-2021, Mark Thom
Copyright (c) 2002-2020, University of Amsterdam
VU University Amsterdam
SWI-Prolog Solutions b.v.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- use_module(library(error)).
:- meta_predicate maplist(1, ?).
:- meta_predicate maplist(2, ?, ?).
:- meta_predicate maplist(3, ?, ?, ?).
:- meta_predicate maplist(4, ?, ?, ?, ?).
:- meta_predicate maplist(5, ?, ?, ?, ?, ?).
:- meta_predicate maplist(6, ?, ?, ?, ?, ?, ?).
:- meta_predicate maplist(7, ?, ?, ?, ?, ?, ?, ?).
:- meta_predicate maplist(8, ?, ?, ?, ?, ?, ?, ?, ?).
:- meta_predicate foldl(3, ?, ?, ?).
:- meta_predicate foldl(4, ?, ?, ?, ?).
:- use_module(library(error)).
:- meta_predicate(resource_error(+,:)).
resource_error(Resource, Context) :-
throw(error(resource_error(Resource), Context)).
%% length(?Xs, ?N).
%
% Relates a list to its length (number of elements). It can be used to count the elements of a current list or
% to create a list full of free variables with N length.
%
% ```
% ?- length("abc", 3).
% true.
% ?- length("abc", N).
% N = 3.
% ?- length(Xs, 3).
% Xs = [_A,_B,_C].
% ```
length(Xs0, N) :-
'$skip_max_list'(M, N, Xs0,Xs),
!,
( Xs == [] -> N = M
; nonvar(Xs) -> var(N), Xs = [_|_], resource_error(finite_memory,length/2)
; nonvar(N) -> R is N-M, length_rundown(Xs, R)
; N == Xs -> failingvarskip(Xs), resource_error(finite_memory,length/2)
; length_addendum(Xs, N, M)
).
length(_, N) :-
integer(N), !,
domain_error(not_less_than_zero, N, length/2).
length(_, N) :-
type_error(integer, N, length/2).
length_rundown(Xs, 0) :- !, Xs = [].
length_rundown(Vs, N) :-
'$unattributed_var'(Vs), % unconstrained
!,
'$det_length_rundown'(Vs, N).
length_rundown([_|Xs], N) :- % force unification
N1 is N-1,
length(Xs, N1). % maybe some new info on Xs
failingvarskip(Xs) :-
'$unattributed_var'(Xs), % unconstrained
!.
failingvarskip([_|Xs0]) :- % force unification
'$skip_max_list'(_, _, Xs0,Xs),
( nonvar(Xs) -> Xs = [_|_]
; failingvarskip(Xs)
).
length_addendum([], N, N).
length_addendum([_|Xs], N, M) :-
M1 is M + 1,
length_addendum(Xs, N, M1).
%% member(?X, ?Xs).
%
% Succeeds when X unifies with an item of the list Xs, which can be at any position.
%
% ```
% ?- member(X, "hello world").
% X = h
% ; ... .
% ```
member(X, [L|Ls]) :-
member_(Ls, L, X).
member_(_, X, X).
member_([L|Ls], _, X) :-
member_(Ls, L, X).
%% select(X, Xs0, Xs1).
%
% Succeeds when the list Xs1 is the list Xs0 without the item X
%
% ```
% ?- select(c, "abcd", X).
% X = "abd"
% ; false.
% ```
select(X, [X|Xs], Xs).
select(X, [Y|Xs], [Y|Ys]) :- select(X, Xs, Ys).
%% append(+XsXs, ?Xs).
%
% Concatenates a list of lists
%
% ```
% ?- append([[1, 2], [3]], Xs).
% Xs = [1,2,3].
% ```
append([], []).
append([L0|Ls0], Ls) :-
append(L0, Rest, Ls),
append(Ls0, Rest).
%% append(Xs0, Xs1, Xs).
%
% List Xs is the concatenation of Xs0 and Xs1
%
% ```
% ?- append([1,2,3], [4,5,6], Xs).
% Xs = [1,2,3,4,5,6].
% ```
append([], R, R).
append([X|L], R, [X|S]) :- append(L, R, S).
%% memberchk(?X, +Xs).
%
% This predicate is similar to `member/2`, but it only provides a single answer
memberchk(X, Xs) :- member(X, Xs), !.
%% reverse(?Xs, ?Ys).
%
% Xs is the Ys list in reverse order
%
% ?- reverse([1,2,3], [3,2,1]).
% true.
%
reverse(Xs, Ys) :-
( nonvar(Xs) -> reverse(Xs, Ys, [], Xs)
; reverse(Ys, Xs, [], Ys)
).
reverse([], [], YsRev, YsRev).
reverse([_|Xs], [Y1|Ys], YsPreludeRev, Xss) :-
reverse(Xs, Ys, [Y1|YsPreludeRev], Xss).
%% maplist(+Predicate, ?Xs0).
%
% This is a metapredicate that applies predicate to each element of the list Xs0
%
% ```
% ?- maplist(write, [1,2,3]).
% 123 true.
% ```
maplist(_, []).
maplist(Cont1, [E1|E1s]) :-
call(Cont1, E1),
maplist(Cont1, E1s).
%% maplist(+Predicate, ?Xs0, ?Xs1).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0 and Xs1.
%
% ```
% ?- maplist(length, ["hello", "prolog", "marseille"], Xs1).
% Xs1 = [5,6,9].
% ```
maplist(_, [], []).
maplist(Cont2, [E1|E1s], [E2|E2s]) :-
call(Cont2, E1, E2),
maplist(Cont2, E1s, E2s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1 and Xs2.
maplist(_, [], [], []).
maplist(Cont3, [E1|E1s], [E2|E2s], [E3|E3s]) :-
call(Cont3, E1, E2, E3),
maplist(Cont3, E1s, E2s, E3s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2, ?Xs3).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1, Xs2 and Xs3.
maplist(_, [], [], [], []).
maplist(Cont, [E1|E1s], [E2|E2s], [E3|E3s], [E4|E4s]) :-
call(Cont, E1, E2, E3, E4),
maplist(Cont, E1s, E2s, E3s, E4s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2, ?Xs3, ?Xs4).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1, Xs2, Xs3 and Xs4.
maplist(_, [], [], [], [], []).
maplist(Cont, [E1|E1s], [E2|E2s], [E3|E3s], [E4|E4s], [E5|E5s]) :-
call(Cont, E1, E2, E3, E4, E5),
maplist(Cont, E1s, E2s, E3s, E4s, E5s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2, ?Xs3, ?Xs4, ?Xs5).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1, Xs2, Xs3, Xs4 and Xs5.
maplist(_, [], [], [], [], [], []).
maplist(Cont, [E1|E1s], [E2|E2s], [E3|E3s], [E4|E4s], [E5|E5s], [E6|E6s]) :-
call(Cont, E1, E2, E3, E4, E5, E6),
maplist(Cont, E1s, E2s, E3s, E4s, E5s, E6s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2, ?Xs3, ?Xs4, ?Xs5, ?Xs6).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1, Xs2, Xs3, Xs4, Xs5 and Xs6.
maplist(_, [], [], [], [], [], [], []).
maplist(Cont, [E1|E1s], [E2|E2s], [E3|E3s], [E4|E4s], [E5|E5s], [E6|E6s], [E7|E7s]) :-
call(Cont, E1, E2, E3, E4, E5, E6, E7),
maplist(Cont, E1s, E2s, E3s, E4s, E5s, E6s, E7s).
%% maplist(+Predicate, ?Xs0, ?Xs1, ?Xs2, ?Xs3, ?Xs4, ?Xs5, ?Xs6, ?Xs7).
%
% This is a metapredicate that applies predicate to each element of the lists Xs0, Xs1, Xs2, Xs3, Xs4, Xs5, Xs6 and Xs7.
maplist(_, [], [], [], [], [], [], [], []).
maplist(Cont, [E1|E1s], [E2|E2s], [E3|E3s], [E4|E4s], [E5|E5s], [E6|E6s], [E7|E7s], [E8|E8s]) :-
call(Cont, E1, E2, E3, E4, E5, E6, E7, E8),
maplist(Cont, E1s, E2s, E3s, E4s, E5s, E6s, E7s, E8s).
%% sum_list(+Xs, -Sum).
%
% Takes a lists of numbers and unifies Sum with the result of summing all the elements of the list.
%
% ```
% ?- sum_list([2,2,2], 6).
% true.
% ```
sum_list(Ls, S) :-
foldl(lists:sum_, Ls, 0, S).
sum_(L, S0, S) :- S is S0 + L.
%% same_length(?Xs, ?Ys).
%
% Succeeds if Xs and Ys are lists of the same length
same_length([], []).
same_length([_|As], [_|Bs]) :-
same_length(As, Bs).
%% foldl(+Predicate, ?Ls, +A0, ?A).
%
% foldl, sometimes called reduce, is a metapredicate that takes a predicate, a list of items
% and a starting value, and outputs a single value. The predicate _Predicate_ must be able to take the current
% element of the list, the previous value of the computation and the next value of the computation.
%
% For example, if we define sum_ as:
%
% ```
% sum_(L, S0, S) :- S is S0 + L.
% ```
%
% Then we can define `sum_list/2` as the following:
%
% ```
% sum_list(Ls, S) :- foldl(sum_, Ls, 0, S).
% ```
foldl(_, [], A, A).
foldl(G_3, [L|Ls], A0, A) :-
call(G_3, L, A0, A1),
foldl(G_3, Ls, A1, A).
%% foldl(+Predicate, ?Ls0, ?Ls1, +A0, ?A).
%
% Same as `foldl/4` but with an extra list
foldl(_, [], [], A, A).
foldl(G_4, [X|Xs], [Y|Ys], A0, A) :-
call(G_4, X, Y, A0, A1),
foldl(G_4, Xs, Ys, A1, A).
%% transpose(?Ls, ?Ts).
%
% If Ls is a list of lists, Ts contains the transposition
%
% ```
% ?- transpose([[1,1],[2,2]], Ts).
% Ts = [[1,2],[1,2]].
% ```
transpose(Ls, Ts) :-
lists_transpose(Ls, Ts).
lists_transpose([], []).
lists_transpose([L|Ls], Ts) :-
maplist(lists:same_length(L), Ls),
foldl(lists:transpose_, L, Ts, [L|Ls], _).
transpose_(_, Fs, Lists0, Lists) :-
maplist(lists:list_first_rest, Lists0, Fs, Lists).
list_first_rest([L|Ls], L, Ls).
%% list_to_set(+Ls0, -Set).
%
% Takes a list Ls0 and returns a list Set that doesn't contain any repeated element
%
% ```
% ?- list_to_set([2,3,4,4,1,2], Set).
% Set = [2,3,4,1].
% ```
list_to_set(Ls0, Ls) :-
maplist(lists:with_var, Ls0, LVs0),
keysort(LVs0, LVs),
same_elements(LVs),
pick_firsts(LVs0, Ls).
pick_firsts([], []).
pick_firsts([E-V|EVs], Fs0) :-
( V == visited ->
Fs0 = Fs
; V = visited,
Fs0 = [E|Fs]
),
pick_firsts(EVs, Fs).
with_var(E, E-_).
same_elements([]).
same_elements([EV|EVs]) :-
foldl(lists:unify_same, EVs, EV, _).
unify_same(E-V, Prev-Var, E-V) :-
( Prev == E ->
Var = V
; true
).
%% nth0(?N, ?Ls, ?E).
%
% Succeeds if in the N position of the list Ls, we found the element E. The elements start counting from zero.
%
% ```
% ?- nth0(2, [1,2,3,4], 3).
% true.
% ```
nth0(N, Es0, E) :-
nonvar(N),
'$skip_max_list'(Skip, N, Es0,Es1),
!,
( Skip == N
-> Es1 = [E|_]
; ( var(Es1) ; Es1 = [_|_] ) % a partial or infinite list
-> R is N-Skip,
skipn(R,Es1,Es2),
Es2 = [E|_]
).
nth0(N, Es0, E) :-
can_be(not_less_than_zero, N),
Es0 = [E0|Es1],
nth0_el(0,N, E0,E, Es1).
skipn(N0, Es0,Es) :-
N0>0,
N1 is N0-1,
Es0 = [_|Es1],
skipn(N1, Es1,Es).
skipn(0, Es,Es).
nth0_el(N0,N, E0,E, Es0) :-
Es0 == [],
!, % indexing
N0 = N,
E0 = E.
nth0_el(N,N, E,E, _).
nth0_el(N0,N, _,E, [E0|Es0]) :-
N1 is N0+1,
nth0_el(N1,N, E0,E, Es0).
%% nth1(?N, ?Ls, ?E).
%
% Succeeds if in the N position of the list Ls, we found the element E. The elements start counting from one.
%
% ```
% ?- nth1(2, [1,2,3,4], 2).
% true.
% ```
nth1(N, Es0, E) :-
N \== 0,
nth0(N, [_|Es0], E),
N \== 0.
skipn(N0, Es0,Es, Xs0,Xs) :-
N0>0,
N1 is N0-1,
Es0 = [E|Es1],
Xs0 = [E|Xs1],
skipn(N1, Es1,Es, Xs1,Xs).
skipn(0, Es,Es, Xs,Xs).
%% nth0(?N, ?Ls, ?E, ?Rs).
%
% Succeeds if in the N position of the list Ls, we found the element E and the rest of the list is Rs. The elements start counting from zero.
%
% ```
% ?- nth0(2, [1,2,3,4], 3, [1,2,4]).
% true.
% ```
nth0(N, Es0, E, Es) :-
integer(N),
N >= 0,
!,
skipn(N, Es0,Es1, Es,Es2),
Es1 = [E|Es2].
nth0(N, Es0, E, Es) :-
can_be(not_less_than_zero, N),
Es0 = [E0|Es1],
nth0_elx(0,N, E0,E, Es1, Es).
nth0_elx(N0,N, E0,E, Es0, Es) :-
Es0 == [],
!,
N0 = N,
E0 = E,
Es0 = Es.
nth0_elx(N,N, E,E, Es, Es).
nth0_elx(N0,N, E0,E, [E1|Es0], [E0|Es]) :-
N1 is N0+1,
nth0_elx(N1,N, E1,E, Es0, Es).
% p.p.8.5
%% nth1(?N, ?Ls, ?E, ?Rs).
%
% Succeeds if in the N position of the list Ls, we found the element E and the rest of the list is Rs. The elements start counting from one.
%
% ```
% ?- nth1(2, [1,2,3,4], 2, [1,3,4]).
% true.
% ```
nth1(N, Es0, E, Es) :-
N \== 0,
nth0(N, [_|Es0], E, [_|Es]),
N \== 0.
%% list_max(+Xs, -Max).
%
% Takes a list Xs and unifies with the maximum value of the list
list_max([N|Ns], Max) :-
foldl(lists:list_max_, Ns, N, Max).
list_max_(N, Max0, Max) :-
Max is max(N, Max0).
%% list_min(+Xs, -Min).
%
% Takes a list Xs and unifies with the minimum value of the list
list_min([N|Ns], Min) :-
foldl(lists:list_min_, Ns, N, Min).
list_min_(N, Min0, Min) :-
Min is min(N, Min0).
%% permutation(?Xs, ?Ys) is nondet.
%
% True when Xs is a permutation of Ys. This can solve for Ys given
% Xs or Xs given Ys, or even enumerate Xs and Ys together. The
% predicate `permutation/2` is primarily intended to generate
% permutations. Note that a list of length N has N! permutations,
% and unbounded permutation generation becomes prohibitively
% expensive, even for rather short lists (10! = 3,628,800).
%
% The example below illustrates that Xs and Ys being proper lists
% is not a sufficient condition to use the above replacement.
%
% ```
% ?- permutation([1,2], [X,Y]).
% X = 1, Y = 2
% ; X = 2, Y = 1
% ; false.
% ```
%
% Throws `type_error(list, Arg)` if either argument is not a proper
% or partial list.
permutation(Xs, Ys) :-
'$skip_max_list'(Xlen, _, Xs, XTail),
'$skip_max_list'(Ylen, _, Ys, YTail),
( XTail == [], YTail == [] % both proper lists
-> Xlen == Ylen
; var(XTail), YTail == [] % partial, proper
-> length(Xs, Ylen)
; XTail == [], var(YTail) % proper, partial
-> length(Ys, Xlen)
; var(XTail), var(YTail) % partial, partial
-> length(Xs, Len),
length(Ys, Len)
; must_be(list, Xs), % either is not a list
must_be(list, Ys)
),
perm(Xs, Ys).
perm([], []).
perm(List, [First|Perm]) :-
select(First, List, Rest),
perm(Rest, Perm).