-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy patharithmetic.pl
163 lines (147 loc) · 5.07 KB
/
arithmetic.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/** Arithmetic predicates
These predicates are additions to standard the arithmetic functions provided by `is/2`.
*/
:- module(arithmetic, [expmod/4, lcm/3, lsb/2, msb/2, number_to_rational/2,
number_to_rational/3, popcount/2,
rational_numerator_denominator/3]).
:- use_module(library(charsio), [write_term_to_chars/3]).
:- use_module(library(error)).
:- use_module(library(lists), [append/3, member/2]).
%% expmod(+Base, +Expo, +Mod, -R).
%
% Modular exponentiation. Base, Expo and Mod must be integers.
expmod(Base, Expo, Mod, R) :-
( member(N, [Base, Expo, Mod]), var(N) -> instantiation_error(expmod/4)
; member(N, [Base, Expo, Mod]), \+ integer(N) ->
type_error(integer, N, expmod/4)
; Expo < 0 -> domain_error(not_less_than_zero, Expo, expmod/4)
; expmod_(Base, Expo, Mod, 1, R)
).
expmod_(_, _, 1, _, 0) :- !.
expmod_(_, 0, _, R, R) :- !.
expmod_(Base0, Expo0, Mod, C0, R) :-
Expo0 /\ 1 =:= 1,
C is (C0 * Base0) mod Mod,
!,
Expo is Expo0 >> 1,
Base is (Base0 * Base0) mod Mod,
expmod_(Base, Expo, Mod, C, R).
expmod_(Base0, Expo0, Mod, C, R) :-
Expo is Expo0 >> 1,
Base is (Base0 * Base0) mod Mod,
expmod_(Base, Expo, Mod, C, R).
%% lcm(+A, +B, -Lcm) is det.
%
% Calculates the Least common multiple for A and B: the smallest positive integer
% that is divisible by both A and B.
%
% A and B need to be integers.
lcm(A, B, X) :-
builtins:must_be_number(A, lcm/2),
builtins:must_be_number(B, lcm/2),
( \+ integer(A) -> type_error(integer, A, lcm/2)
; \+ integer(B) -> type_error(integer, B, lcm/2)
; (A = 0, B = 0) -> X = 0
; builtins:can_be_number(X, lcm/2),
X is abs(B) // gcd(A,B) * abs(A)
).
%% lsb(+X, -N).
%
% True iff N is the least significat bit of integer X
lsb(X, N) :-
builtins:must_be_number(X, lsb/2),
( \+ integer(X) -> type_error(integer, X, lsb/2)
; X < 1 -> domain_error(not_less_than_one, X, lsb/2)
; builtins:can_be_number(N, lsb/2),
X1 is X /\ (-X),
msb_(X1, -1, N)
).
%% msb(+X, -N).
%
% True iff N is the most significant bit of integer X
msb(X, N) :-
builtins:must_be_number(X, msb/2),
( \+ integer(X) -> type_error(integer, X, msb/2)
; X < 1 -> domain_error(not_less_than_one, X, msb/2)
; builtins:can_be_number(N, msb/2),
X1 is X >> 1,
msb_(X1, 0, N)
).
msb_(0, N, N) :- !.
msb_(X, M, N) :-
X1 is X >> 1,
M1 is M + 1,
msb_(X1, M1, N).
%% number_to_rational(+Real, -Fraction).
%
% True iff given a number Real, Fraction is the same number represented as a fraction.
number_to_rational(Real, Fraction) :-
( var(Real) -> instantiation_error(number_to_rational/2)
; integer(Real) -> Fraction is Real rdiv 1
; (rational(Real) ; float(Real)) ->
number_to_rational(1.0e-6, Real, Fraction)
; type_error(number, Real, number_to_rational/2)
).
% If 0 <= Eps0 <= 1e-16 then the search is for "infinite" precision.
number_to_rational(Eps0, Real0, Fraction) :-
( var(Eps0) -> instantiation_error(number_to_rational/3)
; \+ number(Eps0) -> type_error(number, Eps0, number_to_rational/3)
; Eps0 < 0 -> domain_error(not_less_than_zero, Eps0, number_to_rational/3)
; Eps_ is Eps0 rdiv 1,
rational_numerator_denominator(Eps_, EpsN, EpsD),
Eps = EpsN/EpsD
),
( var(Real0) -> instantiation_error(number_to_rational/3)
; \+ number(Real0) -> type_error(number, Eps0, number_to_rational/3)
; Real_ is Real0 rdiv 1,
rational_numerator_denominator(Real_, RealN, RealD),
Real = RealN/RealD
),
E0/E1 = Eps,
P0/Q0 = Real,
( P0 < 0 -> I1 is -1 + P0 // Q0
; I1 is P0 // Q0
),
P1 is P0 mod Q0,
Q1 = Q0,
( P1 =:= 0 -> Fraction is I1 + 0 rdiv 1
; Qn1n is max(P1 * E1 - Q1 * E0, 0),
Qn1d is Q1 * E1,
Qn1 = Qn1n/Qn1d,
Qp1n is P1 * E1 + Q1 * E0,
Qp1d = Qn1d,
Qp1 = Qp1n/Qp1d,
stern_brocot_(Qn1, Qp1, 0/1, 1/0, P2/Q2),
Fraction is I1 + P2 rdiv Q2
),
!.
stern_brocot_(Qnn/Qnd, Qpn/Qpd, A/B, C/D, Fraction) :-
Fn1 is A + C,
Fd1 is B + D,
simplify_fraction(Fn1/Fd1, Fn/Fd),
S1 is sign(Fn * Qnd - Fd * Qnn),
S2 is sign(Fn * Qpd - Fd * Qpn),
( S1 < 0 -> stern_brocot_(Qnn/Qnd, Qpn/Qpd, Fn/Fd, C/D, Fraction)
; S2 > 0 -> stern_brocot_(Qnn/Qnd, Qpn/Qpd, A/B, Fn/Fd, Fraction)
; Fraction = Fn/Fd
).
simplify_fraction(A0/B0, A/B) :-
G is gcd(A0, B0),
A is A0 // G,
B is B0 // G.
%% rational_numerator_denominator(+Fraction, -Numerator, -Denominator).
%
% True iff given a fraction Fraction, Numerator is the numerator of that fraction
% and Denominator the denominator.
rational_numerator_denominator(R, N, D) :-
write_term_to_chars(R, [], Cs),
append(Ns, [' ', r, d, i, v, ' '|Ds], Cs),
number_chars(N, Ns),
number_chars(D, Ds).
%% popcount(+Number, -Bits1).
%
% True iff given an integer Number, Bits1 is the amount of 1 bits the binary representation
% of that number has.
popcount(X, N) :-
must_be(integer, X),
'$popcount'(X, N).