-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem Set 3.tex
398 lines (332 loc) · 11.2 KB
/
Problem Set 3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
\documentclass{article}
%\documentclass[journal,transmag]{IEEEtran}
%\documentclass[10pt, conference]{IEEEtran}
\usepackage{amsmath}
\usepackage{graphicx}
%\usepackage{listings}
%\usepackage{circuitikz}
\usepackage{lscape}
\usepackage{ulem}
\usepackage{float}
\usepackage[scale=0.8]{geometry}
\begin{document}
\title{E6312: Problem Set 2}
\author{Miles Sherman}
\date{\today}
\maketitle
%\textit{The previous homework sets have led me through the investigation of single transistor behaviors and basic amplifier circuits. In this problem set, I examine the use of basic and intermediate biasing circuits. In addition, I begin work with basic differential stages.}
\section{Problem 1}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_1}
\caption{Hand-Written Work for Problem 1.1}
\label{1_1}
\end{figure}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_2a.pdf}
\caption{Hand-Written Work for Problem 1.2}
\label{1_2}
\end{figure}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_2b}
\caption{Hand-Written Work for Problem 1.3}
\label{1_3}
\end{figure}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_2c}
\caption{Hand-Written Work for Problem 1.4}
\label{1_4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_3a}
\caption{Hand-Written Work for Problem 1.4 (ctnd)}
\label{1_4cntd}
\end{figure}
\subsection{(including additional credit problem)}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_3b}
\caption{Hand-Written Work for Problem 1.5}
\label{1_5}
\end{figure}
\newpage
\section{Problem 2}
\subsection{}
For this problem, I performed hand-written calculations and verified my calculations with simulations (see Figures \ref{2_1_schem} and \ref{2_1_dcop}). It should be noted that while my calculated values were not identical to those from simulations, they were reasonably close considering the assumptions made. These assumptions include $\beta = 320\frac{\mu A}{V^2}$ and $V_{th} = 500mV$.
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_4}
\caption{Hand-Written Work for Problem 2.1}
\label{2_1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_1_schem.png}
\caption{Schematic to Verify Sizing Calculations}
\label{2_1_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_1_dcop.png}
\caption{Schematic with DC Operating Point Annotations To Verify Calculations}
\label{2_1_dcop}
\end{figure}
\newpage
\subsection{}
For this problem, I performed hand-written calculations and verified my calculations with simulations (see Figures \ref{2_2_schem}, \ref{2_2_dcop}, \ref{2_2_10p_schem}, and \ref{2_2_10p_dcop}). Again because I made assumptions in my hand calculations, I had to slightly modify my size values in simulation to attain the correct current error. However, it was still very necessary to perform the calculations before simulating because they streamlined the design process. Without my calculations to determine at least a ballpark for each component parameter, the design would have been much more difficult and confusing.
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_5}
\caption{Hand-Written Work for Problem 2.1}
\label{2_1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_2_schem_1p.png}
\caption{Schematic to Verify Sizing Calculations for 1\% Current Error}
\label{2_2_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_2_dcop_1p.png}
\caption{Schematic with DC Operating Point Annotations Verifying Sizing Calculations for 1\% Current Error}
\label{2_2_dcop}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_2_schem.png}
\caption{Schematic to Verify Sizing Calculations for 10\% Current Error}
\label{2_2_10p_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_2_dcop.png}
\caption{Schematic with DC Operating Point Annotations Verifying Sizing Calculations for 10\% Current Error}
\label{2_2_10p_dcop}
\end{figure}
\newpage
\subsection{}
For this problem, I simulated current against Drain Voltage to show how the error trends. For Figure 5 from the from the original assignment write-up, I swept $V_{DS}$ and the current error is shown in Figure \ref{2_3a}. In this plot, the current error is somewhat consistent for most voltage values but drops off around 200mV. This voltage is the compliance of this circuit because it is the minimum voltage to keep M2 in saturation.
For Figure 6 from the original assignment write-up, I swept the drain voltage of M4 using a voltage source and this time the current is seen to saturate around 400mV (the minimum voltage to keep both M3 and M4 in saturation). This plot can be seen in Figure \ref{2_3b}.
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_3_1}
\caption{Current Gain vs. $V_{DS}$ for the Basic Current Mirror Configuration}
\label{2_3a}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_3_2}
\caption{Current Gain vs. $V_{D-4}$ for the Cascode Current Mirror Configuration}
\label{2_3b}
\end{figure}
\newpage
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_6}
\caption{Hand-Written Work for Problem 2.4}
\label{2_4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_4_schem.png}
\caption{Schematic to Verify Sizing Calculations}
\label{2_4_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_4_dcop.png}
\caption{Schematic with DC Operating Point Annotations Verifying Sizing Calculations}
\label{2_4_dcop}
\end{figure}
\newpage
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_7}
\caption{Hand-Written Work for Problem 2.5}
\label{2_5}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_5_schem.png}
\caption{Schematic to Verify Sizing Calculations}
\label{2_5_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_5_dcop.png}
\caption{Schematic with DC Operating Point Annotations Verifying Sizing Calculations}
\label{2_5_dcop}
\end{figure}
\newpage
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_8}
\caption{Hand-Written Work for Problem 2.6}
\label{2_6}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_6_schem.png}
\caption{Schematic to Verify Sizing Calculations}
\label{2_6_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p2_6_dcop.png}
\caption{Schematic with DC Operating Point Annotations Verifying Sizing Calculations}
\label{2_6_dcop}
\end{figure}
\newpage
\section{Problem 3}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_9}
\caption{Hand-Written Work for Problem 3.1}
\label{3_1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_9a}
\caption{Hand-Written Work for Problem 3.1 (cntd)}
\label{3_1a}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1a_schem}
\caption{Schematic to Verifying Gain Calculations for Figure 11}
\label{3_1a_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1a_dcop}
\caption{Schematic with DC Operating Point Annotations to Verifying Gain Calculations for Figure 11}
\label{3_1a_dcop}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1a_gain}
\caption{Gain vs. Frequency for Figure 11}
\label{3_1a_gain}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1b_schem}
\caption{Schematic to Verifying Gain Calculations for Figure 12}
\label{3_1b_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1b_dcop}
\caption{Schematic with DC Operating Point Annotations to Verifying Gain Calculations for Figure 12}
\label{3_1b_dcop}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1b_gain}
\caption{Gain vs. Frequency for Figure 12}
\label{3_1b_gain}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1c_schem}
\caption{Schematic to Verifying Gain Calculations for Figure 13}
\label{3_1c_schem}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1c_dcop}
\caption{Schematic with DC Operating Point Annotations to Verifying Gain Calculations for Figure 13}
\label{3_1c_dcop}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_1c_gain}
\caption{Gain vs. Frequency for Figure 13}
\label{3_1c_gain}
\end{figure}
\newpage
\subsection{}
In this problem I plotted the I-V transfer characteristics for the three differential stages. The first utilizes an ideal current source and thus has a close to perfect butterfly diagram plot. The second utilizes a resistor current source which does not hold the total current through the pair steady. As can be seen, the current actually rises above the $20\mu A$ current initially calculated. However, the butterfly curve can still be seen in the transfer characteristic of this configuration. The third circuit utilizes a current mirror source. Because the transistor cannot act as a perfect current source, the current never saturates and continues to rise as the dean voltage of M0 rises (as a result of the gate voltage of the "ON" transistor at any given time). Also, there is a section of the plot where both currents are off which is a result of the ~500mV threshold voltage of each device.
The required voltage to switch on just one of the the input transistors as discussed in class is
\begin{equation}
V_{ON} = \sqrt{2}V_{OV} = 0.28V
\end{equation}.
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_2a}
\caption{Current Through Each Transistor of the Diff Pair in Figure 11 vs. Differential Input Voltage}
\label{3_2a}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_2b}
\caption{Current Through Each Transistor of the Diff Pair in Figure 12 vs. Differential Input Voltage}
\label{3_2b}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_2c}
\caption{Current Through Each Transistor of the Diff Pair in Figure 13 vs. Differential Input Voltage}
\label{3_2c}
\end{figure}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_10}
\caption{Hand-Written Work for Problem 3.3}
\label{3_3}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_3a}
\caption{Common Mode Gain vs. Frequency for Figure 11}
\label{3_3a_gain}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_3b}
\caption{Common Mode Gain vs. Frequency for Figure 12}
\label{3_3b_gain}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_3c}
\caption{Common Mode Gain vs. Frequency for Figure 13}
\label{3_3c_gain}
\end{figure}
\subsection{}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_11a}
\caption{Hand-Written Work for Problem 3.4}
\label{3_4}
\end{figure}
\newpage
\subsection{}
CMRR can be increased by increasing the resistance of the current source ($R_{SS}$). To do this, we utilize the cascade current mirror as developed earlier in the problem set.
\begin{figure}[H]
\centering
\includegraphics[width=6in]{1_11}
\caption{Hand-Written Work for Problem 3.5}
\label{3_5}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=6in]{p3_5_schem}
\caption{Schematic to Improve CMRR of the Differential Amplifier}
\label{3_5_schem}
\end{figure}
\end{document}