-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
78 lines (43 loc) · 1.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import argparse
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.utils import save_image as imwrite
import os
import time
import re
from test_dataset_for_testing_nosplit import dehaze_test_dataset
from model import final_net
#os.chdir
parser = argparse.ArgumentParser(description='Dehazing_R')
parser.add_argument('--test_dir', type=str, default='data/test/')
parser.add_argument('--output_dir', type=str, default='results')
parser.add_argument('-test_batch_size', help='Set the testing batch size', default=1, type=int)
args = parser.parse_args()
output_dir =args.output_dir
if not os.path.exists(output_dir + '/'):
os.makedirs(output_dir + '/', exist_ok=True)
test_dir = args.test_dir
test_batch_size = args.test_batch_size
test_dataset = dehaze_test_dataset(test_dir)
test_loader = DataLoader(dataset=test_dataset, batch_size=test_batch_size, shuffle=False, num_workers=0)
device = 'cuda:0'
print(device)
MyEnsembleNet= final_net()
# --- Load the network weight --- #
try:
MyEnsembleNet.load_state_dict(torch.load(os.path.join('weights/Dehazing_R_checkpoint', 'model.pkl')))
print('--- MyEnsembleNet loaded ---')
except:
print('--- no weight loaded ---')
MyEnsembleNet = MyEnsembleNet.to(device)
with torch.no_grad():
for batch_idx, (hazy,name) in enumerate(test_loader):
hazy = hazy.to(device)
frame_out = MyEnsembleNet(hazy, testing=True)
frame_out=frame_out.to(device)
fourth_channel=torch.ones([frame_out.shape[0],1,frame_out.shape[2],frame_out.shape[3]],device='cuda:0')
frame_out_rgba=torch.cat([frame_out,fourth_channel],1)
print(frame_out_rgba.shape)
name= re.findall("\d+",str(name))
imwrite(frame_out_rgba, output_dir + '/' + str(name[0])+'.png', range=(0, 1))