forked from cmchurch/nltk_french
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathle-temps_189001-to-189104_frequency-dist.py
294 lines (220 loc) · 17.1 KB
/
le-temps_189001-to-189104_frequency-dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
#Christopher M. Church
#PHD Candidate, Department of History
#Social Science Data Lab (D-Lab)
#University of California, Berkeley
import os #operating system library for os-walk
#global variables
#set the root path for the working directory
#root_path="E:\\Webscraping\\20130827_bnfscrape-data\\working-files\\period2" #set the path that we are going to read through
root_path = "C:\\Users\\Church\\Desktop\\working-folder"
#VERONIS STOPWORDS (http://sites.univ-provence.fr/veronis/) (http://www.up.univ-mrs.fr/veronis/data/antidico.txt)
stopwords = ["Ap.", "Apr.", "GHz", "MHz", "USD", "a", "afin", "ah", "ai", "aie", "aient", "aies", "ait", "alors", "après", "as", "attendu", "au", "au-delà", "au-devant", "aucun", "aucune", "audit", "auprès", "auquel", "aura", "aurai", "auraient", "aurais", "aurait", "auras", "aurez", "auriez", "aurions", "aurons", "auront", "aussi", "autour", "autre", "autres", "autrui", "aux", "auxdites", "auxdits", "auxquelles", "auxquels", "avaient", "avais", "avait", "avant", "avec", "avez", "aviez", "avions", "avons", "ayant", "ayez", "ayons", "b", "bah", "banco", "ben", "bien", "bé", "c", "c'", "c'est", "c'était", "car", "ce", "ceci", "cela", "celle", "celle-ci", "celle-là", "celles", "celles-ci", "celles-là", "celui", "celui-ci", "celui-là", "celà", "cent", "cents", "cependant", "certain", "certaine", "certaines", "certains", "ces", "cet", "cette", "ceux", "ceux-ci", "ceux-là", "cf.", "cg", "cgr", "chacun", "chacune", "chaque", "chez", "ci", "cinq", "cinquante", "cinquante-cinq", "cinquante-deux", "cinquante-et-un", "cinquante-huit", "cinquante-neuf", "cinquante-quatre", "cinquante-sept", "cinquante-six", "cinquante-trois", "cl", "cm", "cm²", "comme", "contre", "d", "d'", "d'après", "d'un", "d'une", "dans", "de", "depuis", "derrière", "des", "desdites", "desdits", "desquelles", "desquels", "deux", "devant", "devers", "dg", "différentes", "différents", "divers", "diverses", "dix", "dix-huit", "dix-neuf", "dix-sept", "dl", "dm", "donc", "dont", "douze", "du", "dudit", "duquel", "durant", "dès", "déjà", "e", "eh", "elle", "elles", "en", "en-dehors", "encore", "enfin", "entre", "envers", "es", "est", "et", "eu", "eue", "eues", "euh", "eurent", "eus", "eusse", "eussent", "eusses", "eussiez", "eussions", "eut", "eux", "eûmes", "eût", "eûtes", "f", "fait", "fi", "flac", "fors", "furent", "fus", "fusse", "fussent", "fusses", "fussiez", "fussions", "fut", "fûmes", "fût", "fûtes", "g", "gr", "h", "ha", "han", "hein", "hem", "heu", "hg", "hl", "hm", "hm³", "holà", "hop", "hormis", "hors", "huit", "hum", "hé", "i", "ici", "il", "ils", "j", "j'", "j'ai", "j'avais", "j'étais", "jamais", "je", "jusqu'", "jusqu'au", "jusqu'aux", "jusqu'à", "jusque", "k", "kg", "km", "km²", "l", "l'", "l'autre", "l'on", "l'un", "l'une", "la", "laquelle", "le", "lequel", "les", "lesquelles", "lesquels", "leur", "leurs", "lez", "lors", "lorsqu'", "lorsque", "lui", "lès", "m", "m'", "ma", "maint", "mainte", "maintes", "maints", "mais", "malgré", "me", "mes", "mg", "mgr", "mil", "mille", "milliards", "millions", "ml", "mm", "mm²", "moi", "moins", "mon", "moyennant", "mt", "m²", "m³", "même", "mêmes", "n", "n'avait", "n'y", "ne", "neuf", "ni", "non", "nonante", "nonobstant", "nos", "notre", "nous", "nul", "nulle", "nº", "néanmoins", "o", "octante", "oh", "on", "ont", "onze", "or", "ou", "outre", "où", "p", "par", "par-delà", "parbleu", "parce", "parmi", "pas", "passé", "pendant", "personne", "peu", "plus", "plus_d'un", "plus_d'une", "plusieurs", "pour", "pourquoi", "pourtant", "pourvu", "près", "puisqu'", "puisque", "q", "qu", "qu'", "qu'elle", "qu'elles", "qu'il", "qu'ils", "qu'on", "quand", "quant", "quarante", "quarante-cinq", "quarante-deux", "quarante-et-un", "quarante-huit", "quarante-neuf", "quarante-quatre", "quarante-sept", "quarante-six", "quarante-trois", "quatorze", "quatre", "quatre-vingt", "quatre-vingt-cinq", "quatre-vingt-deux", "quatre-vingt-dix", "quatre-vingt-dix-huit", "quatre-vingt-dix-neuf", "quatre-vingt-dix-sept", "quatre-vingt-douze", "quatre-vingt-huit", "quatre-vingt-neuf", "quatre-vingt-onze", "quatre-vingt-quatorze", "quatre-vingt-quatre", "quatre-vingt-quinze", "quatre-vingt-seize", "quatre-vingt-sept", "quatre-vingt-six", "quatre-vingt-treize", "quatre-vingt-trois", "quatre-vingt-un", "quatre-vingt-une", "quatre-vingts", "que", "quel", "quelle", "quelles", "quelqu'", "quelqu'un", "quelqu'une", "quelque", "quelques", "quelques-unes", "quelques-uns", "quels", "qui", "quiconque", "quinze", "quoi", "quoiqu'", "quoique", "r", "revoici", "revoilà", "rien", "s", "s'", "sa", "sans", "sauf", "se", "seize", "selon", "sept", "septante", "sera", "serai", "seraient", "serais", "serait", "seras", "serez", "seriez", "serions", "serons", "seront", "ses", "si", "sinon", "six", "soi", "soient", "sois", "soit", "soixante", "soixante-cinq", "soixante-deux", "soixante-dix", "soixante-dix-huit", "soixante-dix-neuf", "soixante-dix-sept", "soixante-douze", "soixante-et-onze", "soixante-et-un", "soixante-et-une", "soixante-huit", "soixante-neuf", "soixante-quatorze", "soixante-quatre", "soixante-quinze", "soixante-seize", "soixante-sept", "soixante-six", "soixante-treize", "soixante-trois", "sommes", "son", "sont", "sous", "soyez", "soyons", "suis", "suite", "sur", "sus", "t", "t'", "ta", "tacatac", "tandis", "te", "tel", "telle", "telles", "tels", "tes", "toi", "ton", "toujours", "tous", "tout", "toute", "toutefois", "toutes", "treize", "trente", "trente-cinq", "trente-deux", "trente-et-un", "trente-huit", "trente-neuf", "trente-quatre", "trente-sept", "trente-six", "trente-trois", "trois", "très", "tu", "u", "un", "une", "unes", "uns", "v", "vers", "via", "vingt", "vingt-cinq", "vingt-deux", "vingt-huit", "vingt-neuf", "vingt-quatre", "vingt-sept", "vingt-six", "vingt-trois", "vis-à-vis", "voici", "voilà", "vos", "votre", "vous", "w", "x", "y", "z", "zéro", "à", "ç'", "ça", "ès", "étaient", "étais", "était", "étant", "étiez", "étions", "été", "étée", "étées", "étés", "êtes", "être", "ô"]
lower_stopwords = [] #make all the stopwords lowercase in order to normalize them
for stopword in stopwords:
lower_stopwords.append(stopword.lower())
# <headingcell level=1>
# STRIP TEXT FROM BNF OCR
# <codecell>
#STRIP TEXT FROM BNF OCR HTML
#USE REGEX INSTEAD OF XML PARSE; lower overhead; also, the files themselves had some problems in the XML and were not properly formed, which resulted in a parse error exception; regex is agnostic to this problem
import re #regex library
path=root_path
elem_name = "span" #name of the dom element to look for
xmls=[] #open up an empty array into which we will store our XML filenames
#get filenames through OS.walk
for root,dirs,files in os.walk(path): #walk through the filepath and look for xml files, storing them in xmls array
for file in files:
if file.endswith('.html'):
xmls.append(file)
for xml in xmls: #for each file found that ended with html, read it and grab the text in SPAN elements and export it to a 'txt' file
output=open(path+"\\text\\"+xml.replace(".html",".txt"),"w")
print xml,
f = open(path + "\\" + xml, "r")
text = f.read()
regex = re.compile('(<span class="PAG.*?>)(.*?)(</span>)')
matches = regex.findall(text)
for match in matches: output.write(match[1]+" ")
f.close()
output.close()
# <headingcell level=1>
# READ IN TEXT ONCE IT'S BEEN STRIPPED AND ADD IT TO A DATA STRUCTURE
# <codecell>
#ADD TEXT TO DATA STRUCTURE (dictionary)
# data structure model
# docs[] = {
# "newspaper_name": name , #THE NAME OF THE NEWSPAPER
# "newspaper_date":date , #THE DATE OF THE NEWSPAPER
# "newspaper_rawtext": open_doc_text, #THE RAW TEXT OF THE NEWSPAPER
# "tokens": tokens, #TOKENS (words) FROM NLTK, word_tokenize
# "sentences": sentences, #SENTENCES (sent) FROM NLTK, sent_tokenize
# "text", text #THE CONVERTED NLTK TEXT OF THE DOCUMENT BASED ON TOKENS
# "dist", freqDist #WORD FREQUENCY DISTRIBUTION OF THE NEWSPAPER
# }
import string #include the string library to use "endswith()"
import nltk #import the natural language toolkit library
#get filenames
relative_path = "\\text" #set the relative working path
path=root_path+relative_path
docs=[] #init an empty docs array to store our newspaper documents
for root,dirs,files in os.walk(path): #walk through the filepath and look for xml files, storing them in docs array
for file in files:
if file.endswith('.txt'):
open_doc = open(path+"\\"+file, "r") #open the file
open_doc_text = open_doc.read() #read the text
filename_array = string.split(str(file),"_") #explode the file name on the "_" character, grabbing the newspaper name and the date
tokens = nltk.word_tokenize(open_doc_text) #create tokens based on whitespace (word_tokenize)
sentences = nltk.sent_tokenize(open_doc_text) #grab sentences from nltk (sent_tokenize)
text = nltk.text.Text(tokens,'UTF8') #create an NTLK text from the word tokens
freqDist = nltk.FreqDist(word.lower() for word in tokens if re.match("^[a-zäáàëéèíìöóòúùñç.-]+$", word.lower()) and word.lower() not in stopwords) #create a frequency distribution (normalized with lowercase words) for this newspaper issue, and discard any non-alphanumeric words
docs.append({"newspaper_name":filename_array[1],"newspaper_date":filename_array[0],"newspaper_rawtext":open_doc_text,"tokens":tokens,"sentences":sentences,"text":text,"dist":freqDist }) #add all the information to a dictionary object in an array (see above)
print "read: " + filename_array[0], #let the user know what document we are on
open_doc.close() #close the open document that was being read
print "Done!" #print complete message
# <codecell>
#AGGREGATE FREQUENCY DISTRIBUTIONS BY MONTH
#stores this in a dictionary called "MONTH"
relative_path = "\\freqdist\\bymonth"
month = {}
print "Aggregating"
#this aggregates the information by month
for doc in docs: #go through all the documents
print ".",
date_month = str(doc['newspaper_date'][:6]) #grab the date from the first 6 characters, which gives you the year and month
current_distribution = doc['dist']
if date_month in month: #if the month is already in our months array, then look up its key and add the current value to it
for k,v in current_distribution.items(): #go through each frequency distribution and write it to a file that matches the "newspaper_name"-"newspaper_date"
if k in month[date_month]:
month[date_month][k]+=v
else:
month[date_month][k]=v
else: #if we haven't already created a key for a given month, do it now
month[date_month]=current_distribution
print "Done!"
# <headingcell level=1>
# OUTPUT TO / READ FROM JSON
# <codecell>
#output all the frequencies aggregated by month into a json
#whitespace=1 for pretty print; whitespace=0 to decrease size
whitespace=0
#path information
relative_path = "\\text\\freqdist\\bymonth" #relative path
path=root_path+relative_path #absolute path
#begin creating json file
print "Outputting frequencies by month to a json file" #let user know the process started
f = open(path + "\\" + "freqdist_monthly.json","w") #open a month file to output to
f.write("{")
total_months = len(month.items()) #total number of months in the list
j=0 #track the number of months, so that commas are not added at the end of the list
for m,dist in month.items(): #go through our monthly distributions
j+=1 #j++
if whitespace==1: f.write('\n') #add in whitespace for pretty print
f.write('"'+m+'":{')
length=len(dist.items()) #total number of items in the frequency distribution
i=0 #use i to track the position in the list, so that commas are not added to the end of the list
for k,v in dist.items(): #get the keys (k) and values (v) for each frequency distribution based on a given month
if whitespace==1: f.write('\n\t') #add white space for pretty print
f.write('"'+str(k)+'":'+str(v)) #write it out following the format ("KEY", value)
i+=1 #i++
if i<length: #only add a comma if not at the end of the list
f.write(',')
f.write("}")
if j<total_months: #only add a comma if not at the end of the list
f.write(',')
print ".", #print a dot to let the user know it's working
if whitespace==1: f.write("\n")
f.write("}")
f.close() #close the file
print "Done!" #let the user know we are all done
# <codecell>
#REIMPORT THE JSON FILE CREATED
import json #import the json library
json_path = root_path + "\\text\\freqdist\\bymonth\\freqdist_monthly.json" #relative path
json_data=open(json_path,"r") #open the json file
data = json.load(json_data) #load the json file as an object (converts it into a dictionary) and store it as "data"
json_data.close() #close the open file
# <headingcell level=1>
# OUTPUT TO CSV FILES
# <codecell>
#export All Frequency distributions for each individual newspaper issue to its own CSV file
relative_path = "\\freqdist" #set the relative path
path = root_path+relative_path
print "Exporting frequency distributions" #let the user know what we are doing
for doc in docs: #go through all our documents
f = open(path + "\\" + str(doc["newspaper_date"])+"_"+doc["newspaper_name"]+"_freqdist.txt","w") #open a file to store our frequency distribution
for k,v in doc["dist"].items(): #go through each frequency distribution and write it to a file that matches the "newspaper_name"-"newspaper_date"
string = "'"+k +"'," + str(v) + "\n" #write it in the following CSV format ( 'KEY',value )
f.write(string) #write it to the file
f.close() #close the working file
print ".", #print a dot to let the user know we're working
print "Done!" #let the user know the task is done
# <codecell>
#output all the frequencies aggregated by month into a text csv for each month
relative_path = "\\text\\freqdist\\bymonth" #relative path
path=root_path+relative_path #absolute path
print "Outputting frequencies by month" #let user know the process started
for m,dist in month.items(): #go through our monthly distributions
f = open(path + "\\" + str(m) + "_freqdist_monthly.txt","w") #open a month file to output to
for k,v in dist.items(): #get the keys (k) and values (v) for each frequency distribution based on a given month
f.write("'"+str(k)+"', "+str(v)+'\n') #write it out following the format ("KEY", value)
print ".", #print a dot to let the user know it's working
f.close() #close the file
print "Done!" #let the user know we are all done
# <headingcell level=1>
# MATPLOTLIB APPLICATION
# <codecell>
#CREATE A SCATTERPLOT OF KEYTERM USE BY MONTH FOR THE PERIOD
#USING MATPLOTLIB
import matplotlib.pyplot as plt
import matplotlib.dates as dates
from datetime import date #needed to parse the dates
#ENTER SEARCH TERM HERE
search_term="paris"
coords = [] #initialize an array to store x,y tuples
for a,b in data.iteritems(): #iterate through the points dictionary, and concatenate the month and year as a date for the x value; the frequency will be the y value
year = a[:4]
month = a[4:6]
if search_term in b.keys():
freq = b[search_term]
else:
freq = 0
xy=(date(int(year),int(month),1),freq)
coords.append(xy)
x=[] #initialize an empty array of x coordinates
y=[] #initialize an empty array of y coordinates
for a,b in sorted(coords):
x.append(a)
y.append(b)
dateformat = dates.DateFormatter('%Y-%m', tz=None) #format the date, YYYY-MM
plt.plot(x,y) #create the scatter plot
ax=plt.gca() #call up the axis and store it as "ax"
ax.xaxis.set_major_formatter(dateformat) #convert the xaxis of the plot to match our date formatter
plt.show() #print the graph
# <headingcell level=1>
# WORKSPACE - testing code that isn't yet operational
# <codecell>
#NOT WORKING - DO NOT RUN
#output all the frequencies aggregated by month into a text csv for overall, with the following format:
# TOKEN 1890-01 1890-02 1890-03 .....
# france 1 2 0 .....
# incendie 0 10 2 .....
relative_path = "\\text\\freqdist\\total" #relative path
path=root_path+relative_path #absolute path
print "Outputting frequencies by month to a single csv" #let user know the process started
f = open(path + "\\" + "total_freqdist_monthly.csv","w") #open a file to output to
for m,dist in month.items(): #go through our monthly distributions
for k,v in dist.items(): #get the keys (k) and values (v) for each frequency distribution based on a given month
f.write("'"+str(k)+"', "+str(v)+'\n') #write it out following the format ("KEY", value)
print ".", #print a dot to let the user know it's working
f.close() #close the file
print "Done!" #let the user know we are all done
# <codecell>
print data
# <codecell>
print xmls
# <codecell>
for stopword in lower_stopwords:
print '"'+stopword + '", ',
# <codecell>