forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwbm2axilite.v
657 lines (594 loc) · 18.3 KB
/
wbm2axilite.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
////////////////////////////////////////////////////////////////////////////////
//
// Filename: wbm2axilite.v (Wishbone master to AXI slave, pipelined)
//
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Convert from a wishbone master to an AXI lite interface. The
// big difference is that AXI lite doesn't support bursting,
// or transaction ID's. This actually makes the task a *LOT* easier.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018-2020, Gisselquist Technology, LLC
//
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
module wbm2axilite #(
parameter C_AXI_ADDR_WIDTH = 28,// AXI Address width
localparam C_AXI_DATA_WIDTH = 32,// Width of the AXI R&W data
localparam DW = C_AXI_DATA_WIDTH,// Wishbone data width
localparam AW = C_AXI_ADDR_WIDTH-2// WB addr width (log wordsize)
) (
(* X_INTERFACE_PARAMETER = "XIL_INTERFACENAME i_clk, ASSOCIATED_BUSIF S_WBP:M_AXI" *)
(* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 i_clk CLK" *)
input wire i_clk,
(* X_INTERFACE_PARAMETER = "XIL_INTERFACENAME i_reset, POLARITY ACTIVE_HIGH" *)
(* X_INTERFACE_INFO = "xilinx.com:signal:reset:1.0 i_reset RST" *)
input wire i_reset,
//
// We'll share the clock and the reset
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP CYC" *)
input wire i_wb_cyc,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP STB" *)
input wire i_wb_stb,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP WE" *)
input wire i_wb_we,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP ADR" *)
input wire [(AW-1):0] i_wb_addr,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP DAT_MOSI" *)
input wire [(DW-1):0] i_wb_data,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP SEL" *)
input wire [(DW/8-1):0] i_wb_sel,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP STALL" *)
output wire o_wb_stall,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP ACK" *)
output reg o_wb_ack,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP DAT_MISO" *)
output reg [(DW-1):0] o_wb_data,
(* X_INTERFACE_INFO = "opencores.org:bus:wishbone:B4 S_WBP ERR" *)
output reg o_wb_err,
//
// AXI write address channel signals
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWVALID" *)
output reg o_axi_awvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWREADY" *)
input wire i_axi_awready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWADDR" *)
output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_awaddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI AWPROT" *)
output wire [2:0] o_axi_awprot,
//
// AXI write data channel signals
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WVALID" *)
output reg o_axi_wvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WREADY" *)
input wire i_axi_wready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WDATA" *)
output reg [C_AXI_DATA_WIDTH-1:0] o_axi_wdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI WSTRB" *)
output reg [C_AXI_DATA_WIDTH/8-1:0] o_axi_wstrb,
//
// AXI write response channel signals
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BVALID" *)
input wire i_axi_bvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BREADY" *)
output wire o_axi_bready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI BRESP" *)
input wire [1:0] i_axi_bresp,
//
// AXI read address channel signals
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARVALID" *)
output reg o_axi_arvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARREADY" *)
input wire i_axi_arready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARADDR" *)
output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_araddr,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI ARPROT" *)
output wire [2:0] o_axi_arprot,
//
// AXI read data channel signals
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RVALID" *)
input wire i_axi_rvalid,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RREADY" *)
output wire o_axi_rready,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RDATA" *)
input wire [C_AXI_DATA_WIDTH-1:0] i_axi_rdata,
(* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI RRESP" *)
input wire [1:0] i_axi_rresp
);
//*****************************************************************************
// Local Parameter declarations
//*****************************************************************************
localparam LG_AXI_DW = ( C_AXI_DATA_WIDTH == 8) ? 3
: ((C_AXI_DATA_WIDTH == 16) ? 4
: ((C_AXI_DATA_WIDTH == 32) ? 5
: ((C_AXI_DATA_WIDTH == 64) ? 6
: ((C_AXI_DATA_WIDTH == 128) ? 7
: 8))));
localparam LG_WB_DW = ( DW == 8) ? 3
: ((DW == 16) ? 4
: ((DW == 32) ? 5
: ((DW == 64) ? 6
: ((DW == 128) ? 7
: 8))));
//
// LGIFOFLN: The log (based two) of the size of our FIFO. This is a
// localparam since 1) 32-bit distributed memories nearly come for
// free, and 2) because there is no performance gain to be had in larger
// memories. 2^32 entries is the perfect size for this application.
// Any smaller, and the core will not be able to maintain 100%
// throughput.
localparam LGFIFOLN = 5;
localparam FIFOLN = (1<<LGFIFOLN);
//*****************************************************************************
// Internal register and wire declarations
//*****************************************************************************
// Things we're not changing ...
assign o_axi_awprot = 3'b000; // Unpriviledged, unsecure, data access
assign o_axi_arprot = 3'b000; // Unpriviledged, unsecure, data access
reg full_fifo, err_state, axi_reset_state, wb_we;
reg [3:0] reset_count;
reg pending;
reg [LGFIFOLN-1:0] outstanding, err_pending;
// Master bridge logic
assign o_wb_stall = (full_fifo)
||((!i_wb_we)&&( wb_we)&&(pending))
||(( i_wb_we)&&(!wb_we)&&(pending))
||(err_state)||(axi_reset_state)
||(o_axi_arvalid)&&(!i_axi_arready)
||(o_axi_awvalid)&&(!i_axi_awready)
||(o_axi_wvalid)&&(!i_axi_wready);
initial axi_reset_state = 1'b1;
initial reset_count = 4'hf;
always @(posedge i_clk)
if (i_reset)
begin
axi_reset_state <= 1'b1;
if (reset_count > 0)
reset_count <= reset_count - 1'b1;
end else if ((axi_reset_state)&&(reset_count > 0))
reset_count <= reset_count - 1'b1;
else begin
axi_reset_state <= 1'b0;
reset_count <= 4'hf;
end
// Count outstanding transactions
initial pending = 0;
initial outstanding = 0;
always @(posedge i_clk)
if ((i_reset)||(axi_reset_state))
begin
pending <= 0;
outstanding <= 0;
full_fifo <= 0;
end else if ((err_state)||(!i_wb_cyc))
begin
pending <= 0;
outstanding <= 0;
full_fifo <= 0;
end else case({ ((i_wb_stb)&&(!o_wb_stall)), (o_wb_ack) })
2'b01: begin
outstanding <= outstanding - 1'b1;
pending <= (outstanding >= 2);
full_fifo <= 1'b0;
end
2'b10: begin
outstanding <= outstanding + 1'b1;
pending <= 1'b1;
full_fifo <= (outstanding >= {{(LGFIFOLN-2){1'b1}},2'b01});
end
default: begin end
endcase
always @(posedge i_clk)
if ((i_wb_stb)&&(!o_wb_stall))
wb_we <= i_wb_we;
//
//
// Write address logic
//
initial o_axi_awvalid = 0;
always @(posedge i_clk)
if (i_reset)
o_axi_awvalid <= 0;
else
o_axi_awvalid <= (!o_wb_stall)&&(i_wb_stb)&&(i_wb_we)
||(o_axi_awvalid)&&(!i_axi_awready);
always @(posedge i_clk)
if (!o_wb_stall)
o_axi_awaddr <= { i_wb_addr, 2'b00 };
//
//
// Read address logic
//
initial o_axi_arvalid = 1'b0;
always @(posedge i_clk)
if (i_reset)
o_axi_arvalid <= 1'b0;
else
o_axi_arvalid <= (!o_wb_stall)&&(i_wb_stb)&&(!i_wb_we)
||((o_axi_arvalid)&&(!i_axi_arready));
always @(posedge i_clk)
if (!o_wb_stall)
o_axi_araddr <= { i_wb_addr, 2'b00 };
//
//
// Write data logic
//
always @(posedge i_clk)
if (!o_wb_stall)
begin
o_axi_wdata <= i_wb_data;
o_axi_wstrb <= i_wb_sel;
end
initial o_axi_wvalid = 0;
always @(posedge i_clk)
if (i_reset)
o_axi_wvalid <= 0;
else
o_axi_wvalid <= ((!o_wb_stall)&&(i_wb_stb)&&(i_wb_we))
||((o_axi_wvalid)&&(!i_axi_wready));
initial o_wb_ack = 1'b0;
always @(posedge i_clk)
if ((i_reset)||(!i_wb_cyc)||(err_state))
o_wb_ack <= 1'b0;
else if (err_state)
o_wb_ack <= 1'b0;
else if ((i_axi_bvalid)&&(!i_axi_bresp[1]))
o_wb_ack <= 1'b1;
else if ((i_axi_rvalid)&&(!i_axi_rresp[1]))
o_wb_ack <= 1'b1;
else
o_wb_ack <= 1'b0;
always @(posedge i_clk)
o_wb_data <= i_axi_rdata;
// Read data channel / response logic
assign o_axi_rready = 1'b1;
assign o_axi_bready = 1'b1;
initial o_wb_err = 1'b0;
always @(posedge i_clk)
if ((i_reset)||(!i_wb_cyc)||(err_state))
o_wb_err <= 1'b0;
else if ((i_axi_bvalid)&&(i_axi_bresp[1]))
o_wb_err <= 1'b1;
else if ((i_axi_rvalid)&&(i_axi_rresp[1]))
o_wb_err <= 1'b1;
else
o_wb_err <= 1'b0;
initial err_state = 1'b0;
always @(posedge i_clk)
if (i_reset)
err_state <= 0;
else if ((i_axi_bvalid)&&(i_axi_bresp[1]))
err_state <= 1'b1;
else if ((i_axi_rvalid)&&(i_axi_rresp[1]))
err_state <= 1'b1;
else if ((pending)&&(!i_wb_cyc))
err_state <= 1'b1;
else if (err_pending == 0)
err_state <= 0;
initial err_pending = 0;
always @(posedge i_clk)
if (i_reset)
err_pending <= 0;
else case({ ((i_wb_stb)&&(!o_wb_stall)),
((i_axi_bvalid)||(i_axi_rvalid)) })
2'b01: err_pending <= err_pending - 1'b1;
2'b10: err_pending <= err_pending + 1'b1;
default: begin end
endcase
// Make verilator happy
// verilator lint_off UNUSED
wire [2:0] unused;
assign unused = { i_wb_cyc, i_axi_bresp[0], i_axi_rresp[0] };
// verilator lint_on UNUSED
/////////////////////////////////////////////////////////////////////////
//
//
//
// Formal methods section
//
// These are only relevant when *proving* that this translator works
//
//
//
/////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
reg f_past_valid;
//
`define ASSUME assume
`define ASSERT assert
// Parameters
initial assert(DW == 32);
initial assert(C_AXI_ADDR_WIDTH == AW+2);
//
//
// Setup
//
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
always @(*)
if (!f_past_valid)
`ASSUME(i_reset);
//////////////////////////////////////////////
//
//
// Assumptions about the WISHBONE inputs
//
//
//////////////////////////////////////////////
always @(*)
assume(f_past_valid || i_reset);
wire [(LGFIFOLN-1):0] f_wb_nreqs, f_wb_nacks,f_wb_outstanding;
fwb_slave #(.DW(DW),.AW(AW),
.F_MAX_STALL(0),
.F_MAX_ACK_DELAY(0),
.F_LGDEPTH(LGFIFOLN),
.F_MAX_REQUESTS(FIFOLN-2))
f_wb(i_clk, i_reset, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr,
i_wb_data, i_wb_sel,
o_wb_ack, o_wb_stall, o_wb_data, o_wb_err,
f_wb_nreqs, f_wb_nacks, f_wb_outstanding);
wire [(LGFIFOLN-1):0] f_axi_rd_outstanding,
f_axi_wr_outstanding,
f_axi_awr_outstanding;
faxil_master #(
// .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.F_LGDEPTH(LGFIFOLN),
.F_AXI_MAXWAIT(3),
.F_OPT_HAS_CACHE(1'b0),
.F_AXI_MAXDELAY(3))
f_axil(.i_clk(i_clk),
.i_axi_reset_n((!i_reset)&&(!axi_reset_state)),
// Write address channel
.i_axi_awready(i_axi_awready),
.i_axi_awaddr( o_axi_awaddr),
.i_axi_awcache(4'h0),
.i_axi_awprot( o_axi_awprot),
.i_axi_awvalid(o_axi_awvalid),
// Write data channel
.i_axi_wready( i_axi_wready),
.i_axi_wdata( o_axi_wdata),
.i_axi_wstrb( o_axi_wstrb),
.i_axi_wvalid( o_axi_wvalid),
// Write response channel
.i_axi_bresp( i_axi_bresp),
.i_axi_bvalid( i_axi_bvalid),
.i_axi_bready( o_axi_bready),
// Read address channel
.i_axi_arready(i_axi_arready),
.i_axi_araddr( o_axi_araddr),
.i_axi_arcache(4'h0),
.i_axi_arprot( o_axi_arprot),
.i_axi_arvalid(o_axi_arvalid),
// Read data channel
.i_axi_rresp( i_axi_rresp),
.i_axi_rvalid( i_axi_rvalid),
.i_axi_rdata( i_axi_rdata),
.i_axi_rready( o_axi_rready),
// Counts
.f_axi_rd_outstanding( f_axi_rd_outstanding),
.f_axi_wr_outstanding( f_axi_wr_outstanding),
.f_axi_awr_outstanding( f_axi_awr_outstanding)
);
//////////////////////////////////////////////
//
//
// Assumptions about the AXI inputs
//
//
//////////////////////////////////////////////
//////////////////////////////////////////////
//
//
// Assertions about the AXI4 ouputs
//
//
//////////////////////////////////////////////
// Write response channel
always @(posedge i_clk)
// We keep bready high, so the other condition doesn't
// need to be checked
assert(o_axi_bready);
// AXI read data channel signals
always @(posedge i_clk)
// We keep o_axi_rready high, so the other condition's
// don't need to be checked here
assert(o_axi_rready);
//
// Let's look into write requests
//
initial assert(!o_axi_awvalid);
initial assert(!o_axi_wvalid);
always @(posedge i_clk)
if ((!f_past_valid)||($past(i_reset))||($past(axi_reset_state)))
begin
assert(!o_axi_awvalid);
assert(!o_axi_wvalid);
end
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_reset))
&&($past((i_wb_stb)&&(i_wb_we)&&(!o_wb_stall))))
begin
// Following any write request that we accept, awvalid
// and wvalid should both be true
assert(o_axi_awvalid);
assert(o_axi_wvalid);
assert(wb_we);
end else if ((f_past_valid)&&($past(i_reset)))
begin
if ($past(i_axi_awready))
assert(!o_axi_awvalid);
if ($past(i_axi_wready))
assert(!o_axi_wvalid);
end
//
// AXI write address channel
//
always @(posedge i_clk)
if ((f_past_valid)&&($past((i_wb_stb)&&(i_wb_we)&&(!o_wb_stall))))
assert(o_axi_awaddr == { $past(i_wb_addr[AW-1:0]), 2'b00 });
//
// AXI write data channel
//
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_wb_stb)&&(i_wb_we)&&(!$past(o_wb_stall))))
begin
assert(o_axi_wdata == $past(i_wb_data));
assert(o_axi_wstrb == $past(i_wb_sel));
end
//
// AXI read address channel
//
initial assert(!o_axi_arvalid);
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_reset))
&&($past((i_wb_stb)&&(!i_wb_we)&&(!o_wb_stall))))
begin
assert(o_axi_arvalid);
assert(o_axi_araddr == { $past(i_wb_addr), 2'b00 });
end
//
//
// AXI write response channel
//
//
// AXI read data channel signals
//
always @(posedge i_clk)
if ((f_past_valid)&&(($past(i_reset))||($past(axi_reset_state))))
begin
// Relate err_pending to outstanding
assert(outstanding == 0);
assert(err_pending == 0);
end else if (!err_state)
assert(err_pending == outstanding - ((o_wb_ack)||(o_wb_err)));
always @(posedge i_clk)
if ((f_past_valid)&&(($past(i_reset))||($past(axi_reset_state))))
begin
assert(f_axi_awr_outstanding == 0);
assert(f_axi_wr_outstanding == 0);
assert(f_axi_rd_outstanding == 0);
assert(f_wb_outstanding == 0);
assert(!pending);
assert(outstanding == 0);
assert(err_pending == 0);
end else if (wb_we)
begin
case({o_axi_awvalid,o_axi_wvalid})
2'b00: begin
`ASSERT(f_axi_awr_outstanding == err_pending);
`ASSERT(f_axi_wr_outstanding == err_pending);
end
2'b01: begin
`ASSERT(f_axi_awr_outstanding == err_pending);
`ASSERT(f_axi_wr_outstanding +1 == err_pending);
end
2'b10: begin
`ASSERT(f_axi_awr_outstanding+1 == err_pending);
`ASSERT(f_axi_wr_outstanding == err_pending);
end
2'b11: begin
`ASSERT(f_axi_awr_outstanding+1 == err_pending);
`ASSERT(f_axi_wr_outstanding +1 == err_pending);
end
endcase
//
`ASSERT(!o_axi_arvalid);
`ASSERT(f_axi_rd_outstanding == 0);
end else begin
if (!o_axi_arvalid)
`ASSERT(f_axi_rd_outstanding == err_pending);
else
`ASSERT(f_axi_rd_outstanding+1 == err_pending);
`ASSERT(!o_axi_awvalid);
`ASSERT(!o_axi_wvalid);
`ASSERT(f_axi_awr_outstanding == 0);
`ASSERT(f_axi_wr_outstanding == 0);
end
always @(*)
if ((!i_reset)&&(i_wb_cyc)&&(!err_state))
`ASSERT(f_wb_outstanding == outstanding);
always @(posedge i_clk)
if ((f_past_valid)&&(err_state))
`ASSERT((o_wb_err)||(f_wb_outstanding == 0));
always @(posedge i_clk)
`ASSERT(pending == (outstanding != 0));
//
// Make sure we only create one request at a time
always @(posedge i_clk)
`ASSERT((!o_axi_arvalid)||(!o_axi_wvalid));
always @(posedge i_clk)
`ASSERT((!o_axi_arvalid)||(!o_axi_awvalid));
always @(posedge i_clk)
if (wb_we)
`ASSERT(!o_axi_arvalid);
else
`ASSERT((!o_axi_awvalid)&&(!o_axi_wvalid));
always @(*)
if (&outstanding[LGFIFOLN-1:1])
`ASSERT(full_fifo);
always @(*)
assert(outstanding < {(LGFIFOLN){1'b1}});
// AXI cover results
always @(*)
cover(i_axi_bvalid && o_axi_bready);
always @(*)
cover(i_axi_rvalid && o_axi_rready);
always @(posedge i_clk)
cover(i_axi_bvalid && o_axi_bready
&& $past(i_axi_bvalid && o_axi_bready)
&& $past(i_axi_bvalid && o_axi_bready,2));
always @(posedge i_clk)
cover(i_axi_rvalid && o_axi_rready
&& $past(i_axi_rvalid && o_axi_rready)
&& $past(i_axi_rvalid && o_axi_rready,2));
// AXI cover requests
always @(posedge i_clk)
cover(o_axi_arvalid && i_axi_arready
&& $past(o_axi_arvalid && i_axi_arready)
&& $past(o_axi_arvalid && i_axi_arready,2));
always @(posedge i_clk)
cover(o_axi_awvalid && i_axi_awready
&& $past(o_axi_awvalid && i_axi_awready)
&& $past(o_axi_awvalid && i_axi_awready,2));
always @(posedge i_clk)
cover(o_axi_wvalid && i_axi_wready
&& $past(o_axi_wvalid && i_axi_wready)
&& $past(o_axi_wvalid && i_axi_wready,2));
always @(*)
cover(i_axi_rvalid && o_axi_rready);
// Wishbone cover results
always @(*)
cover(i_wb_cyc && o_wb_ack);
always @(posedge i_clk)
cover(i_wb_cyc && o_wb_ack
&& $past(o_wb_ack)&&$past(o_wb_ack,2));
`endif
endmodule
`ifndef YOSYS
`default_nettype wire
`endif