forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaximwr2wbsp.v
578 lines (509 loc) · 15.7 KB
/
aximwr2wbsp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
////////////////////////////////////////////////////////////////////////////////
//
// Filename: aximwr2wbsp.v
//
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Convert the three AXI4 write channels to a single wishbone
// channel to write the results.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015-2020, Gisselquist Technology, LLC
//
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
//
module aximwr2wbsp #(
parameter C_AXI_ID_WIDTH = 6, // The AXI id width used for R&W
// This is an int between 1-16
parameter C_AXI_DATA_WIDTH = 32,// Width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width
parameter [0:0] OPT_SWAP_ENDIANNESS = 1'b0, // Lil to Big Endian swap
parameter AXI_LSBS = $clog2(C_AXI_DATA_WIDTH)-3, // change it only to support narrow transfers
localparam AW = C_AXI_ADDR_WIDTH-AXI_LSBS,
localparam DW = C_AXI_DATA_WIDTH,
parameter LGFIFO = 5
) (
input wire S_AXI_ACLK, // System clock
input wire S_AXI_ARESETN,
// AXI write address channel signals
input wire S_AXI_AWVALID, // Write address valid
output wire S_AXI_AWREADY, // Slave is ready to accept
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, // Write ID
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, // Write address
input wire [7:0] S_AXI_AWLEN, // Write Burst Length
input wire [2:0] S_AXI_AWSIZE, // Write Burst size
input wire [1:0] S_AXI_AWBURST, // Write Burst type
input wire [0:0] S_AXI_AWLOCK, // Write lock type
input wire [3:0] S_AXI_AWCACHE, // Write Cache type
input wire [2:0] S_AXI_AWPROT, // Write Protection type
input wire [3:0] S_AXI_AWQOS, // Write Quality of Svc
// AXI write data channel signals
input wire S_AXI_WVALID, // Write valid
output wire S_AXI_WREADY, // Write data ready
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, // Write data
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, // Write strobes
input wire S_AXI_WLAST, // Last write transaction
// AXI write response channel signals
output wire S_AXI_BVALID, // Write reponse valid
input wire S_AXI_BREADY, // Response ready
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, // Response ID
output wire [1:0] S_AXI_BRESP, // Write response
// We'll share the clock and the reset
output reg o_wb_cyc,
output reg o_wb_stb,
output reg [(AW-1):0] o_wb_addr,
output reg [(C_AXI_DATA_WIDTH-1):0] o_wb_data,
output reg [(C_AXI_DATA_WIDTH/8-1):0] o_wb_sel,
input wire i_wb_stall,
input wire i_wb_ack,
// input [(C_AXI_DATA_WIDTH-1):0] i_wb_data,
input wire i_wb_err
);
wire w_reset;
wire skid_awvalid;
reg accept_write_burst;
wire [C_AXI_ID_WIDTH-1:0] skid_awid;
wire [C_AXI_ADDR_WIDTH-1:0] skid_awaddr;
wire [7:0] skid_awlen;
wire [2:0] skid_awsize;
wire [1:0] skid_awburst;
//
wire skid_wvalid, skid_wlast;
reg skid_wready;
wire [C_AXI_DATA_WIDTH-1:0] skid_wdata;
wire [C_AXI_DATA_WIDTH/8-1:0] skid_wstrb;
reg skid_awready;
reg [7:0] axi_wlen, wlen;
reg [C_AXI_ID_WIDTH-1:0] axi_wid;
reg [C_AXI_ADDR_WIDTH-1:0] axi_waddr;
wire [C_AXI_ADDR_WIDTH-1:0] next_addr;
reg [1:0] axi_wburst;
reg [2:0] axi_wsize;
reg [LGFIFO+7:0] acks_expected;
reg [LGFIFO:0] writes_expected;
reg last_ack;
reg err_state;
reg read_ack_fifo;
wire [7:0] fifo_ack_ln;
reg [8:0] acklen;
reg ack_last, ack_err, ack_empty;
reg [LGFIFO:0] total_fifo_fill;
reg total_fifo_full;
wire wb_ack_fifo_full, wb_ack_fifo_empty;
wire [LGFIFO:0] wb_ack_fifo_fill;
wire err_fifo_full, err_fifo_empty;
wire [LGFIFO:0] err_fifo_fill;
reg err_fifo_write;
wire bid_fifo_full, bid_fifo_empty;
wire [LGFIFO:0] bid_fifo_fill;
assign w_reset = (S_AXI_ARESETN == 1'b0);
// Step 1: a pair of skid buffers
skidbuffer #(
.OPT_OUTREG(0),
.DW(C_AXI_ADDR_WIDTH+C_AXI_ID_WIDTH+8+3+2))
awskid(S_AXI_ACLK, !S_AXI_ARESETN, S_AXI_AWVALID, S_AXI_AWREADY,
{ S_AXI_AWID, S_AXI_AWADDR, S_AXI_AWLEN,
S_AXI_AWSIZE, S_AXI_AWBURST },
skid_awvalid, accept_write_burst,
{ skid_awid, skid_awaddr, skid_awlen,
skid_awsize, skid_awburst });
skidbuffer #(
.OPT_OUTREG(0),
.DW(C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8+1))
wskid(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_WVALID, S_AXI_WREADY,
{ S_AXI_WDATA, S_AXI_WSTRB, S_AXI_WLAST },
skid_wvalid, skid_wready,
{ skid_wdata, skid_wstrb, skid_wlast });
always @(*)
begin
accept_write_burst = (skid_awready)&&(!o_wb_stb || !i_wb_stall)
&&(!err_state)&&(skid_awvalid)
&&(!total_fifo_full);
if (axi_wid != skid_awid && (acks_expected > 0))
accept_write_burst = 0;
if (!skid_wvalid)
accept_write_burst = 0;
end
always @(*)
skid_wready = (!o_wb_stb || !i_wb_stall || err_state)
&&(!skid_awready || accept_write_burst);
initial skid_awready = 1'b1;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
skid_awready <= 1'b1;
else if (accept_write_burst)
skid_awready <= (skid_awlen == 0)&&(skid_wvalid)&&(skid_wlast);
else if (skid_wvalid && skid_wready && skid_wlast)
skid_awready <= 1'b1;
always @(posedge S_AXI_ACLK)
if (accept_write_burst)
begin
axi_wid <= skid_awid;
axi_waddr <= skid_awaddr;
axi_wsize <= skid_awsize;
axi_wburst <= skid_awburst;
axi_wlen <= skid_awlen;
wlen <= skid_awlen;
end else if (skid_wvalid && skid_wready)
begin
axi_waddr <= next_addr;
if (!skid_awready)
wlen <= wlen - 1;
end
axi_addr #(.AW(C_AXI_ADDR_WIDTH), .DW(C_AXI_DATA_WIDTH))
next_write_addr(axi_waddr, axi_wsize, axi_wburst, axi_wlen, next_addr);
initial { o_wb_cyc, o_wb_stb } = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN || err_state || (o_wb_cyc && i_wb_err))
begin
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else if (accept_write_burst)
begin
o_wb_cyc <= 1'b1;
o_wb_stb <= skid_wvalid && skid_wready;
end else begin
if (!o_wb_stb || !i_wb_stall)
o_wb_stb <= (!skid_awready)&&(skid_wvalid&&skid_wready);
if (o_wb_cyc && last_ack && i_wb_ack && !skid_awvalid)
o_wb_cyc <= 0;
end
always @(*)
o_wb_addr = axi_waddr[C_AXI_ADDR_WIDTH-1:AXI_LSBS];
generate if (OPT_SWAP_ENDIANNESS)
begin : SWAP_ENDIANNESS
integer ik;
always @(posedge S_AXI_ACLK)
if (!o_wb_stb || !i_wb_stall)
begin
for(ik=0; ik<DW/8; ik=ik+1)
begin
o_wb_data[ik*8 +: 8]
<= skid_wdata[(DW/8-1-ik)*8 +: 8];
o_wb_sel[ik] <= skid_wstrb[DW/8-1-ik];
end
end
end else begin : KEEP_ENDIANNESS
always @(posedge S_AXI_ACLK)
if (!o_wb_stb || !i_wb_stall)
begin
o_wb_data <= skid_wdata;
o_wb_sel <= skid_wstrb;
end
end endgenerate
initial writes_expected = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
begin
writes_expected <= 0;
end else case({skid_wvalid && skid_wready && skid_wlast,
S_AXI_BVALID && S_AXI_BREADY })
2'b01: writes_expected <= writes_expected - 1;
2'b10: writes_expected <= writes_expected + 1;
default: begin end
endcase
initial acks_expected = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN || i_wb_err || err_state)
begin
acks_expected <= 0;
end else case({skid_awvalid && accept_write_burst, {i_wb_ack|i_wb_err}})
2'b01: acks_expected <= acks_expected - 1;
2'b10: acks_expected <= acks_expected + ({{(LGFIFO){1'b0}},skid_awlen} + 1);
2'b11: acks_expected <= acks_expected + {{(LGFIFO){1'b0}},skid_awlen};
default: begin end
endcase
initial last_ack = 1;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN || i_wb_err || err_state)
begin
last_ack <= 1;
end else case({skid_awvalid && accept_write_burst, i_wb_ack })
2'b01: last_ack <= (acks_expected <= 2);
2'b10: last_ack <= (acks_expected == 0)&&(skid_awlen == 0);
2'b11: last_ack <= last_ack && (skid_awlen == 0);
default: begin end
endcase
initial total_fifo_fill = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
total_fifo_fill <= 0;
else case({ accept_write_burst, S_AXI_BVALID && S_AXI_BREADY })
2'b01: total_fifo_fill <= total_fifo_fill - 1;
2'b10: total_fifo_fill <= total_fifo_fill + 1;
default: begin end
endcase
always @(*)
total_fifo_full = total_fifo_fill[LGFIFO];
sfifo #(.BW(8), .LGFLEN(LGFIFO),
.OPT_ASYNC_READ(1'b1))
wb_ack_fifo(S_AXI_ACLK, !S_AXI_ARESETN,
accept_write_burst, skid_awlen,
wb_ack_fifo_full, wb_ack_fifo_fill,
read_ack_fifo, fifo_ack_ln, wb_ack_fifo_empty);
always @(*)
begin
read_ack_fifo = ack_last && (i_wb_ack || i_wb_err);
if (err_state || ack_empty)
read_ack_fifo = 1;
if (wb_ack_fifo_empty)
read_ack_fifo = 1'b0;
end
reg [8:0] next_acklen;
reg [1:0] next_acklow;
always @(*)
next_acklen = fifo_ack_ln + ((acklen[0] ? 1:0)
+ ((i_wb_ack|i_wb_err)? 0:1));
always @(*)
next_acklow = fifo_ack_ln[0] + ((acklen[0] ? 1:0)
+ ((i_wb_ack|i_wb_err)? 0:1));
initial acklen = 0;
initial ack_last = 0;
initial ack_empty = 1;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN || err_state)
begin
acklen <= 0;
ack_last <= 0;
ack_empty<= 1;
end else if (read_ack_fifo)
begin
acklen <= next_acklen;
ack_last <= (fifo_ack_ln < 2)&&(next_acklow == 1);
ack_empty<= (fifo_ack_ln == 0)&&(!acklen[0])
&&(i_wb_ack || i_wb_err);
end else if (i_wb_ack || i_wb_err)
begin
if (acklen > 0)
acklen <= acklen - 1;
ack_last <= (acklen == 2);
ack_empty <= ack_last;
end
always @(posedge S_AXI_ACLK)
if (read_ack_fifo)
begin
ack_err <= (wb_ack_fifo_empty) || err_state || i_wb_err;
end else if (i_wb_ack || i_wb_err || err_state)
ack_err <= ack_err || (i_wb_err || err_state);
initial err_state = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
err_state <= 0;
else if (o_wb_cyc && i_wb_err)
err_state <= 1;
else if ((total_fifo_fill == bid_fifo_fill)
&&(total_fifo_fill == err_fifo_fill))
err_state <= 0;
initial err_fifo_write = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
err_fifo_write <= 0;
else if (read_ack_fifo && ack_empty && fifo_ack_ln == 0)
err_fifo_write <= (i_wb_ack || i_wb_err || err_state);
else if (ack_last)
err_fifo_write <= (i_wb_ack || i_wb_err || err_state);
else
err_fifo_write <= 1'b0;
sfifo #(.BW(C_AXI_ID_WIDTH), .LGFLEN(LGFIFO))
bid_fifo(S_AXI_ACLK, !S_AXI_ARESETN,
skid_wvalid && skid_wready && skid_wlast,
(total_fifo_fill == bid_fifo_fill) ? skid_awid:axi_wid,
bid_fifo_full, bid_fifo_fill,
S_AXI_BVALID & S_AXI_BREADY, S_AXI_BID, bid_fifo_empty);
sfifo #(.BW(1), .LGFLEN(LGFIFO))
err_fifo(S_AXI_ACLK, !S_AXI_ARESETN,
err_fifo_write, { ack_err || i_wb_err },
err_fifo_full, err_fifo_fill,
S_AXI_BVALID & S_AXI_BREADY, S_AXI_BRESP[1], err_fifo_empty);
assign S_AXI_BVALID = !bid_fifo_empty && !err_fifo_empty;
assign S_AXI_BRESP[0]= 1'b0;
// Make Verilator happy
// verilator lint_on UNUSED
wire unused;
assign unused = &{ 1'b0, S_AXI_AWBURST, S_AXI_AWSIZE,
S_AXI_AWLOCK, S_AXI_AWCACHE, S_AXI_AWPROT,
S_AXI_AWQOS, S_AXI_WLAST,
wb_ack_fifo_full, wb_ack_fifo_fill,
bid_fifo_full, err_fifo_full,
w_reset
};
// verilator lint_off UNUSED
`ifdef FORMAL
////////////////////////////////////////////////////////////////////////
//
// The following are a subset of the properties used to verify this
// core
//
////////////////////////////////////////////////////////////////////////
//
//
reg f_past_valid;
initial f_past_valid = 1'b0;
always @(posedge S_AXI_ACLK)
f_past_valid <= 1'b1;
localparam F_LGDEPTH = (LGFIFO>8) ? LGFIFO+1 : 10, F_LGRDFIFO = 72; // 9*F_LGFIFO;
wire [(F_LGDEPTH-1):0]
fwb_nreqs, fwb_nacks, fwb_outstanding;
//
// ...
//
//
fwb_master #(.AW(AW), .DW(C_AXI_DATA_WIDTH), .F_MAX_STALL(2),
.F_MAX_ACK_DELAY(3), .F_LGDEPTH(F_LGDEPTH),
.F_OPT_DISCONTINUOUS(1))
fwb(S_AXI_ACLK, w_reset,
o_wb_cyc, o_wb_stb, 1'b1, o_wb_addr, o_wb_data, o_wb_sel,
i_wb_ack, i_wb_stall, {(DW){1'b0}}, i_wb_err,
fwb_nreqs, fwb_nacks, fwb_outstanding);
//
// ...
//
faxi_slave #(.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.F_LGDEPTH(F_LGDEPTH),
.F_AXI_MAXSTALL(0),
.F_AXI_MAXDELAY(0))
faxi(.i_clk(S_AXI_ACLK), .i_axi_reset_n(S_AXI_ARESETN),
.i_axi_awready(S_AXI_AWREADY),
.i_axi_awid( S_AXI_AWID),
.i_axi_awaddr( S_AXI_AWADDR),
.i_axi_awlen( S_AXI_AWLEN),
.i_axi_awsize( S_AXI_AWSIZE),
.i_axi_awburst(S_AXI_AWBURST),
.i_axi_awlock( S_AXI_AWLOCK),
.i_axi_awcache(S_AXI_AWCACHE),
.i_axi_awprot( S_AXI_AWPROT),
.i_axi_awqos( S_AXI_AWQOS),
.i_axi_awvalid(S_AXI_AWVALID),
//
.i_axi_wready(S_AXI_WREADY),
.i_axi_wdata( S_AXI_WDATA),
.i_axi_wstrb( S_AXI_WSTRB),
.i_axi_wlast( S_AXI_WLAST),
.i_axi_wvalid(S_AXI_WVALID),
//
.i_axi_bid( S_AXI_BID),
.i_axi_bresp( S_AXI_BRESP),
.i_axi_bvalid(S_AXI_BVALID),
.i_axi_bready(S_AXI_BREADY),
//
.i_axi_arready(1'b0),
.i_axi_arid( {(C_AXI_ID_WIDTH){1'b0}}),
.i_axi_araddr({(C_AXI_ADDR_WIDTH){1'b0}}),
.i_axi_arlen( 8'h0),
.i_axi_arsize( 3'h0),
.i_axi_arburst(2'h0),
.i_axi_arlock( 1'b0),
.i_axi_arcache(4'h0),
.i_axi_arprot( 3'h0),
.i_axi_arqos( 4'h0),
.i_axi_arvalid(1'b0),
//
.i_axi_rresp( 2'h0),
.i_axi_rid( {(C_AXI_ID_WIDTH){1'b0}}),
.i_axi_rvalid(1'b0),
.i_axi_rdata( {(C_AXI_DATA_WIDTH){1'b0}}),
.i_axi_rlast( 1'b0),
.i_axi_rready(1'b0)
//
// ...
//
);
(* anyconst *) reg never_err;
always @(*)
if (never_err)
begin
assume(!i_wb_err);
assert(!err_state);
if (!skid_awvalid)
assert(o_wb_cyc == (acks_expected != 0));
if (!skid_awready)
assert(o_wb_cyc);
if (S_AXI_BVALID)
assert(!S_AXI_BRESP[1]);
assert(!S_AXI_BRESP[0]);
end
////////////////////////////////////////////////////////////////////////
//
// Cover checks
//
////////////////////////////////////////////////////////////////////////
//
//
reg [3:0] cvr_writes, cvr_write_bursts, cvr_wrid_bursts;
reg [C_AXI_ID_WIDTH-1:0] cvr_write_id;
initial cvr_writes = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_writes <= 1;
else if (i_wb_err)
cvr_writes <= 0;
else if (S_AXI_BVALID && S_AXI_BREADY && !cvr_writes[3]
&& cvr_writes > 0)
cvr_writes <= cvr_writes + 1;
initial cvr_write_bursts = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_write_bursts <= 1;
else if (S_AXI_AWVALID && S_AXI_AWLEN < 1)
cvr_write_bursts <= 0;
else if (i_wb_err)
cvr_write_bursts <= 0;
else if (S_AXI_BVALID && S_AXI_BREADY
&& !cvr_write_bursts[3] && cvr_write_bursts > 0)
cvr_write_bursts <= cvr_write_bursts + 1;
initial cvr_write_id = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_write_id <= 1;
else if (S_AXI_BVALID && S_AXI_BREADY)
cvr_write_id <= cvr_write_id + 1;
initial cvr_wrid_bursts = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_wrid_bursts <= 1;
else if (S_AXI_AWVALID && S_AXI_AWLEN < 1)
cvr_wrid_bursts <= 0;
else if (i_wb_err)
cvr_wrid_bursts <= 0;
else if (S_AXI_BVALID && S_AXI_BREADY
&& S_AXI_BID == cvr_write_id
&& !cvr_wrid_bursts[3] && cvr_wrid_bursts > 0)
cvr_wrid_bursts <= cvr_wrid_bursts + 1;
always @(*)
cover(cvr_writes == 4);
always @(*)
cover(cvr_write_bursts == 4);
always @(*)
cover(cvr_wrid_bursts == 4);
`endif
endmodule
`ifndef YOSYS
`default_nettype wire
`endif