forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxi2axilite.v
985 lines (907 loc) · 26.8 KB
/
axi2axilite.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axi2axilite.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Convert from AXI to AXI-lite with no performance loss.
//
// Performance: The goal of this converter is to convert from AXI to AXI-lite
// while still maintaining the one-clock per transaction speed
// of AXI. It currently achieves this goal. The design needs very little
// configuration to be useful, but you might wish to resize the FIFOs
// within depending upon the length of your slave's data path. The current
// FIFO length, LGFIFO=4, is sufficient to maintain full speed. If the
// slave, however, can maintain full speed but requires a longer
// processing cycle, then you may need longer FIFOs.
//
// The AXI specification does require an additional 2 clocks per
// transaction when using this core, so your latency will go up.
//
// Related: There's a related axidouble.v core in the same repository as
// well. That can be used to convert the AXI protocol to something
// simpler (even simpler than AXI-lite), but it can also do so for multiple
// downstream slaves at the same time.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2019-2020, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// }}}
module axi2axilite #(
// {{{
parameter integer C_AXI_ID_WIDTH = 2,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_ADDR_WIDTH = 6,
parameter [0:0] OPT_WRITES = 1,
parameter [0:0] OPT_READS = 1,
// Log (based two) of the maximum number of outstanding AXI
// (not AXI-lite) transactions. If you multiply 2^LGFIFO * 256,
// you'll get the maximum number of outstanding AXI-lite
// transactions
parameter LGFIFO = 4
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
// AXI (incoming) Write address
// {{{
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [7:0] S_AXI_AWLEN,
input wire [2:0] S_AXI_AWSIZE,
input wire [1:0] S_AXI_AWBURST,
input wire S_AXI_AWLOCK,
input wire [3:0] S_AXI_AWCACHE,
input wire [2:0] S_AXI_AWPROT,
input wire [3:0] S_AXI_AWQOS,
// }}}
// AXI (incoming) Write data
// {{{
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [(C_AXI_DATA_WIDTH/8)-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
// }}}
// AXI (incoming) Write response
// {{{
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
// }}}
// AXI (incoming) Read address
// {{{
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [7:0] S_AXI_ARLEN,
input wire [2:0] S_AXI_ARSIZE,
input wire [1:0] S_AXI_ARBURST,
input wire S_AXI_ARLOCK,
input wire [3:0] S_AXI_ARCACHE,
input wire [2:0] S_AXI_ARPROT,
input wire [3:0] S_AXI_ARQOS,
// }}}
// AXI Read data and response
// {{{
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
// }}}
// AXI-Lite interface
// {{{
// Write address (issued by master, acceped by Slave)
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [2 : 0] M_AXI_AWPROT,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [(C_AXI_DATA_WIDTH/8)-1:0] M_AXI_WSTRB,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
input wire [1 : 0] M_AXI_BRESP,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
//
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [2:0] M_AXI_ARPROT,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
//
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
input wire [C_AXI_DATA_WIDTH-1 : 0] M_AXI_RDATA,
input wire [1 : 0] M_AXI_RRESP
// }}}
// }}}
);
// Local parameters, register, and net declarations
// {{{
localparam [1:0] OKAY = 2'b00,
EXOKAY = 2'b01,
SLVERR = 2'b10,
DECERR = 2'b10;
localparam AW = C_AXI_ADDR_WIDTH;
localparam DW = C_AXI_DATA_WIDTH;
localparam IW = C_AXI_ID_WIDTH;
localparam LSB = $clog2(C_AXI_DATA_WIDTH)-3;
//
// Write registers
reg m_axi_awvalid, s_axi_wready;
reg [C_AXI_ADDR_WIDTH-1:0] axi_awaddr;
reg [7:0] axi_awlen, axi_blen;
reg [1:0] axi_awburst;
reg [2:0] axi_awsize;
wire [C_AXI_ADDR_WIDTH-1:0] next_write_addr;
wire [4:0] wfifo_count;
wire wfifo_full;
wire wfifo_empty;
wire [7:0] wfifo_bcount;
wire [IW-1:0] wfifo_bid;
reg [8:0] bcounts;
reg [C_AXI_ID_WIDTH-1:0] axi_bid, bid;
reg [1:0] axi_bresp;
reg s_axi_bvalid;
wire read_from_wrfifo;
//
// Read register
reg m_axi_arvalid;
wire [4:0] rfifo_count;
wire rfifo_full;
wire rfifo_empty;
wire [7:0] rfifo_rcount;
reg s_axi_rvalid;
reg [1:0] s_axi_rresp;
reg [8:0] rcounts;
reg [C_AXI_ADDR_WIDTH-1:0] axi_araddr;
reg [7:0] axi_arlen, axi_rlen;
reg [1:0] axi_arburst;
reg [2:0] axi_arsize;
wire [C_AXI_ADDR_WIDTH-1:0] next_read_addr;
reg [C_AXI_ID_WIDTH-1:0] s_axi_rid;
wire [C_AXI_ID_WIDTH-1:0] rfifo_rid;
reg [C_AXI_DATA_WIDTH-1:0] s_axi_rdata;
reg s_axi_rlast;
reg [IW-1:0] rid;
wire read_from_rdfifo;
//
// S_AXI_AW* skid buffer
wire skids_awvalid, skids_awready;
wire [IW-1:0] skids_awid;
wire [AW-1:0] skids_awaddr;
wire [7:0] skids_awlen;
wire [2:0] skids_awsize;
wire [1:0] skids_awburst;
//
// S_AXI_W* skid buffer
wire skids_wvalid, skids_wready, skids_wlast;
wire [DW-1:0] skids_wdata;
wire [DW/8-1:0] skids_wstrb;
//
// S_AXI_B* skid buffer isn't needed
//
// M_AXI_AW* skid buffer isn't needed
//
// M_AXI_W* skid buffer
wire skidm_wvalid, skidm_wready;
wire [DW-1:0] skidm_wdata;
wire [DW/8-1:0] skidm_wstrb;
//
// M_AXI_B* skid buffer
wire skidm_bvalid, skidm_bready;
wire [1:0] skidm_bresp;
//
//
//
// S_AXI_AR* skid buffer
wire skids_arvalid, skids_arready;
wire [IW-1:0] skids_arid;
wire [AW-1:0] skids_araddr;
wire [7:0] skids_arlen;
wire [2:0] skids_arsize;
wire [1:0] skids_arburst;
//
// S_AXI_R* skid buffer isn't needed
//
// M_AXI_AR* skid buffer isn't needed
// M_AXI_R* skid buffer
wire skidm_rvalid, skidm_rready;
wire [DW-1:0] skidm_rdata;
wire [1:0] skidm_rresp;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Write logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate if (OPT_WRITES)
begin : IMPLEMENT_WRITES
// {{{
// The write address channel's skid buffer
skidbuffer #(.DW(IW+AW+8+3+2), .OPT_LOWPOWER(0), .OPT_OUTREG(0))
awskid(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_AWVALID, S_AXI_AWREADY,
{ S_AXI_AWID, S_AXI_AWADDR, S_AXI_AWLEN, S_AXI_AWSIZE,
S_AXI_AWBURST },
skids_awvalid, skids_awready,
{ skids_awid, skids_awaddr, skids_awlen, skids_awsize,
skids_awburst });
//
// The write data channel's skid buffer (S_AXI_W*)
skidbuffer #(.DW(DW+DW/8+1), .OPT_LOWPOWER(0), .OPT_OUTREG(0))
wskid(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_WVALID, S_AXI_WREADY,
{ S_AXI_WDATA, S_AXI_WSTRB, S_AXI_WLAST },
skids_wvalid, skids_wready,
{ skids_wdata, skids_wstrb, skids_wlast });
//
// The downstream AXI-lite write data (M_AXI_W*) skid buffer
skidbuffer #(.DW(DW+DW/8), .OPT_LOWPOWER(0), .OPT_OUTREG(1))
mwskid(S_AXI_ACLK, !S_AXI_ARESETN,
skidm_wvalid, skidm_wready, { skidm_wdata, skidm_wstrb },
M_AXI_WVALID, M_AXI_WREADY, { M_AXI_WDATA, M_AXI_WSTRB });
//
// The downstream AXI-lite response (M_AXI_B*) skid buffer
skidbuffer #(.DW(2), .OPT_LOWPOWER(0), .OPT_OUTREG(0))
bskid(S_AXI_ACLK, !S_AXI_ARESETN,
M_AXI_BVALID, M_AXI_BREADY, { M_AXI_BRESP },
skidm_bvalid, skidm_bready, { skidm_bresp });
initial m_axi_awvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
m_axi_awvalid <= 0;
else if (skids_awvalid & skids_awready)
m_axi_awvalid <= 1;
else if (M_AXI_AWREADY && axi_awlen == 0)
m_axi_awvalid <= 0;
assign M_AXI_AWVALID = m_axi_awvalid;
assign skids_awready = (!M_AXI_AWVALID
|| ((axi_awlen == 0)&&M_AXI_AWREADY))
&& !wfifo_full
&&(!s_axi_wready || (skids_wvalid && skids_wlast && skids_wready));
always @(posedge S_AXI_ACLK)
if (skids_awvalid && skids_awready)
begin
axi_awaddr <= skids_awaddr;
axi_blen <= skids_awlen;
axi_awburst<= skids_awburst;
axi_awsize <= skids_awsize;
end else if (M_AXI_AWVALID && M_AXI_AWREADY)
axi_awaddr <= next_write_addr;
initial axi_awlen = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_awlen <= 0;
else if (skids_awvalid && skids_awready)
axi_awlen <= skids_awlen;
else if (M_AXI_AWVALID && M_AXI_AWREADY && axi_awlen > 0)
axi_awlen <= axi_awlen - 1;
axi_addr #(.AW(C_AXI_ADDR_WIDTH), .DW(C_AXI_DATA_WIDTH))
calcwraddr(axi_awaddr, axi_awsize, axi_awburst,
axi_blen, next_write_addr);
// We really don't need to do anything special to the write channel.
initial s_axi_wready = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
s_axi_wready <= 0;
else if (skids_awvalid && skids_awready)
s_axi_wready <= 1;
else if (skids_wvalid && skids_wready && skids_wlast)
s_axi_wready <= 0;
assign skidm_wdata = skids_wdata;
assign skidm_wstrb = skids_wstrb;
assign skidm_wvalid = skids_wvalid && s_axi_wready;
assign skids_wready = s_axi_wready && skidm_wready;
assign read_from_wrfifo = (bcounts <= 1)&&(!wfifo_empty)
&&(skidm_bvalid && skidm_bready);
// BFIFO
sfifo #(.BW(C_AXI_ID_WIDTH+8), .LGFLEN(LGFIFO))
bidlnfifo(S_AXI_ACLK, !S_AXI_ARESETN,
skids_awvalid && skids_awready,
{ skids_awid, skids_awlen },
wfifo_full, wfifo_count,
read_from_wrfifo,
{ wfifo_bid, wfifo_bcount }, wfifo_empty);
// Return counts
initial bcounts = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
bcounts <= 0;
else if (read_from_wrfifo)
begin
bcounts <= wfifo_bcount + bcounts;
end else if (skidm_bvalid && skidm_bready)
bcounts <= bcounts - 1;
always @(posedge S_AXI_ACLK)
if (read_from_wrfifo)
bid <= wfifo_bid;
always @(posedge S_AXI_ACLK)
if (!S_AXI_BVALID || S_AXI_BREADY)
axi_bid <= (read_from_wrfifo && bcounts==0) ? wfifo_bid : bid;
initial s_axi_bvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
s_axi_bvalid <= 0;
else if (skidm_bvalid && skidm_bready)
s_axi_bvalid <= (bcounts == 1)
||((bcounts == 0) && (!wfifo_empty) && (wfifo_bcount == 0));
else if (S_AXI_BREADY)
s_axi_bvalid <= 0;
initial axi_bresp = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_bresp <= 0;
else if (S_AXI_BVALID && S_AXI_BREADY)
begin
if (skidm_bvalid && skidm_bready)
axi_bresp <= skidm_bresp;
else
axi_bresp <= 0;
end else if (skidm_bvalid && skidm_bready)
begin
// Let SLVERR take priority over DECERR
casez({ S_AXI_BRESP, skidm_bresp })
4'b??0?: axi_bresp <= S_AXI_BRESP;
4'b0?1?: axi_bresp <= skidm_bresp;
4'b1?10: axi_bresp <= SLVERR;
4'b1011: axi_bresp <= SLVERR;
4'b1111: axi_bresp <= skidm_bresp;
endcase
end
assign M_AXI_AWVALID= m_axi_awvalid;
assign M_AXI_AWADDR = axi_awaddr;
assign M_AXI_AWPROT = 0;
assign skidm_bready = ((bcounts > 0)||(!wfifo_empty))&&(!S_AXI_BVALID | S_AXI_BREADY);
assign S_AXI_BID = axi_bid;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = s_axi_bvalid;
// }}}
end else begin : NO_WRITE_SUPPORT
// {{{
assign S_AXI_AWREADY = 0;
assign S_AXI_WREADY = 0;
assign S_AXI_BID = 0;
assign S_AXI_BRESP = 2'b11;
assign S_AXI_BVALID = 0;
assign S_AXI_BID = 0;
//
assign M_AXI_AWVALID = 0;
assign M_AXI_AWADDR = 0;
assign M_AXI_AWPROT = 0;
//
assign M_AXI_WVALID = 0;
assign M_AXI_WDATA = 0;
assign M_AXI_WSTRB = 0;
//
assign M_AXI_BREADY = 0;
//
// S_AXI_AW* skid buffer
assign skids_awvalid = 0;
assign skids_awready = 0;
assign skids_awid = 0;
assign skids_awaddr = 0;
assign skids_awlen = 0;
assign skids_awsize = 0;
assign skids_awburst = 0;
//
// S_AXI_W* skid buffer
assign skids_wvalid = S_AXI_WVALID;
assign skids_wready = S_AXI_WREADY;
assign skids_wdata = S_AXI_WDATA;
assign skids_wstrb = S_AXI_WSTRB;
assign skids_wlast = S_AXI_WLAST;
//
// S_AXI_B* skid buffer isn't needed
//
// M_AXI_AW* skid buffer isn't needed
//
// M_AXI_W* skid buffer
assign skidm_wvalid = M_AXI_WVALID;
assign skidm_wready = M_AXI_WREADY;
assign skidm_wdata = M_AXI_WDATA;
assign skidm_wstrb = M_AXI_WSTRB;
//
// M_AXI_B* skid buffer
assign skidm_bvalid = M_AXI_BVALID;
assign skidm_bready = M_AXI_BREADY;
assign skidm_bresp = M_AXI_BRESP;
//
//
always @(*)
begin
s_axi_wready = 0;
axi_awlen = 0;
bcounts = 0;
bid = 0;
axi_bresp = 0;
axi_bid = 0;
end
assign wfifo_full = 0;
assign wfifo_empty = 1;
assign wfifo_count = 0;
assign read_from_wrfifo = 0;
// }}}
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate if (OPT_READS)
begin : IMPLEMENT_READS
// {{{
//
// S_AXI_AR* skid buffer
skidbuffer #(.DW(IW+AW+8+3+2), .OPT_LOWPOWER(0), .OPT_OUTREG(0))
arskid(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_ARVALID, S_AXI_ARREADY,
{ S_AXI_ARID, S_AXI_ARADDR, S_AXI_ARLEN, S_AXI_ARSIZE,
S_AXI_ARBURST },
skids_arvalid, skids_arready,
{ skids_arid, skids_araddr, skids_arlen, skids_arsize,
skids_arburst });
//
// M_AXI_R* skid buffer
skidbuffer #(.DW(DW+2), .OPT_LOWPOWER(0), .OPT_OUTREG(0))
rskid(S_AXI_ACLK, !S_AXI_ARESETN,
M_AXI_RVALID, M_AXI_RREADY, { M_AXI_RDATA, M_AXI_RRESP },
skidm_rvalid, skidm_rready, { skidm_rdata, skidm_rresp });
initial m_axi_arvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
m_axi_arvalid <= 0;
else if (skids_arvalid && skids_arready)
m_axi_arvalid <= 1;
else if (M_AXI_ARREADY && axi_arlen == 0)
m_axi_arvalid <= 0;
always @(posedge S_AXI_ACLK)
if (skids_arvalid && skids_arready)
begin
axi_araddr <= skids_araddr;
axi_arburst <= skids_arburst;
axi_arsize <= skids_arsize;
axi_rlen <= skids_arlen;
end else if (M_AXI_ARREADY)
axi_araddr <= next_read_addr;
axi_addr #(.AW(C_AXI_ADDR_WIDTH), .DW(C_AXI_DATA_WIDTH))
calcrdaddr(axi_araddr, axi_arsize, axi_arburst,
axi_rlen, next_read_addr);
initial axi_arlen = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_arlen <= 0;
else if (skids_arvalid && skids_arready)
axi_arlen <= skids_arlen;
else if (M_AXI_ARVALID && M_AXI_ARREADY && axi_arlen > 0)
axi_arlen <= axi_arlen - 1;
assign skids_arready = (!M_AXI_ARVALID ||
((axi_arlen == 0) && M_AXI_ARREADY))
&& !rfifo_full;
assign read_from_rdfifo = skidm_rvalid && skidm_rready
&& (rcounts <= 1) && !rfifo_empty;
sfifo #(.BW(C_AXI_ID_WIDTH+8), .LGFLEN(LGFIFO))
ridlnfifo(S_AXI_ACLK, !S_AXI_ARESETN,
skids_arvalid && skids_arready,
{ skids_arid, skids_arlen },
rfifo_full, rfifo_count,
read_from_rdfifo,
{ rfifo_rid, rfifo_rcount }, rfifo_empty);
assign skidm_rready = (!S_AXI_RVALID || S_AXI_RREADY);
initial s_axi_rvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
s_axi_rvalid <= 0;
else if (skidm_rvalid && skidm_rready)
s_axi_rvalid <= 1;
else if (S_AXI_RREADY)
s_axi_rvalid <= 0;
always @(posedge S_AXI_ACLK)
if (skidm_rvalid && skidm_rready)
begin
s_axi_rresp <= skidm_rresp;
s_axi_rdata <= skidm_rdata;
end else if (S_AXI_RREADY)
begin
s_axi_rresp <= 0;
s_axi_rdata <= 0;
end
// Return counts
initial rcounts = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
rcounts <= 0;
else if (read_from_rdfifo)
rcounts <= rfifo_rcount + rcounts;
else if (skidm_rvalid && skidm_rready)
rcounts <= rcounts - 1;
initial rid = 0;
always @(posedge S_AXI_ACLK)
if (read_from_rdfifo)
rid <= rfifo_rid;
always @(posedge S_AXI_ACLK)
if (!S_AXI_RVALID || S_AXI_RREADY)
begin
// if (rcounts == 1) s_axi_rlast <= 1; else
if (read_from_rdfifo)
s_axi_rlast <= (rfifo_rcount == 0);
else
s_axi_rlast <= 0;
if (rcounts == 1)
s_axi_rlast <= 1;
end
initial s_axi_rid = 0;
always @(posedge S_AXI_ACLK)
if ((S_AXI_RVALID && S_AXI_RREADY && S_AXI_RLAST)
||(!S_AXI_RVALID && rcounts == 0))
s_axi_rid <= (read_from_rdfifo)&&(rcounts == 0)?rfifo_rid : rid;
assign M_AXI_ARVALID= m_axi_arvalid;
assign M_AXI_ARADDR = axi_araddr;
assign M_AXI_ARPROT = 0;
assign S_AXI_RVALID = s_axi_rvalid;
assign S_AXI_RDATA = s_axi_rdata;
assign S_AXI_RRESP = s_axi_rresp;
assign S_AXI_RLAST = s_axi_rlast;
assign S_AXI_RID = s_axi_rid;
// }}}
end else begin : NO_READ_SUPPORT // if (!OPT_READS)
// {{{
assign M_AXI_ARVALID= 0;
assign M_AXI_ARADDR = 0;
assign M_AXI_ARPROT = 0;
assign M_AXI_RREADY = 0;
//
assign S_AXI_ARREADY= 0;
assign S_AXI_RVALID = 0;
assign S_AXI_RDATA = 0;
assign S_AXI_RRESP = 0;
assign S_AXI_RLAST = 0;
assign S_AXI_RID = 0;
//
assign skids_arvalid = S_AXI_ARVALID;
assign skids_arready = S_AXI_ARREADY;
assign skids_arid = S_AXI_ARID;
assign skids_araddr = S_AXI_ARADDR;
assign skids_arlen = S_AXI_ARLEN;
assign skids_arsize = S_AXI_ARSIZE;
assign skids_arburst = S_AXI_ARBURST;
//
assign skidm_rvalid = M_AXI_RVALID;
assign skidm_rready = M_AXI_RREADY;
assign skidm_rdata = M_AXI_RDATA;
assign skidm_rresp = M_AXI_RRESP;
//
//
always @(*)
begin
axi_arlen = 0;
rcounts = 0;
rid = 0;
end
assign rfifo_empty = 1;
assign rfifo_full = 0;
assign rfifo_count = 0;
// }}}
end endgenerate
// }}}
// Make Verilator happy
// {{{
// Verilator lint_off UNUSED
wire [35-1:0] unused;
assign unused = {
S_AXI_AWLOCK, S_AXI_AWCACHE, S_AXI_AWPROT, S_AXI_AWQOS,
skids_wlast, wfifo_count,
S_AXI_ARLOCK, S_AXI_ARCACHE, S_AXI_ARPROT, S_AXI_ARQOS,
rfifo_count };
// Verilator lint_on UNUSED
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties
// {{{
// The following are a subset of the formal properties used to verify this core
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
localparam F_LGDEPTH = LGFIFO+1+8;
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// AXI channel properties
//
////////////////////////////////////////////////////////////////////////
faxi_slave #(.C_AXI_ID_WIDTH(IW),
.C_AXI_DATA_WIDTH(DW),
.C_AXI_ADDR_WIDTH(AW),
//
)
faxi(.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
// Write address
.i_axi_awready(skids_awready),
.i_axi_awid( skids_awid),
.i_axi_awaddr( skids_awaddr),
.i_axi_awlen( skids_awlen),
.i_axi_awsize( skids_awsize),
.i_axi_awburst(skids_awburst),
.i_axi_awlock( 0),
.i_axi_awcache(0),
.i_axi_awprot( 0),
.i_axi_awqos( 0),
.i_axi_awvalid(skids_awvalid),
// Write data
.i_axi_wready( skids_wready),
.i_axi_wdata( skids_wdata),
.i_axi_wstrb( skids_wstrb),
.i_axi_wlast( skids_wlast),
.i_axi_wvalid( skids_wvalid),
// Write return response
.i_axi_bid( S_AXI_BID),
.i_axi_bresp( S_AXI_BRESP),
.i_axi_bvalid( S_AXI_BVALID),
.i_axi_bready( S_AXI_BREADY),
// Read address
.i_axi_arready(skids_arready),
.i_axi_arid( skids_arid),
.i_axi_araddr( skids_araddr),
.i_axi_arlen( skids_arlen),
.i_axi_arsize( skids_arsize),
.i_axi_arburst(skids_arburst),
.i_axi_arlock( 0),
.i_axi_arcache(0),
.i_axi_arprot( 0),
.i_axi_arqos( 0),
.i_axi_arvalid(skids_arvalid),
// Read response
.i_axi_rid( S_AXI_RID),
.i_axi_rresp( S_AXI_RRESP),
.i_axi_rvalid( S_AXI_RVALID),
.i_axi_rdata( S_AXI_RDATA),
.i_axi_rlast( S_AXI_RLAST),
.i_axi_rready( S_AXI_RREADY),
//
// Formal property data
.f_axi_awr_nbursts( faxi_awr_nbursts),
.f_axi_wr_pending( faxi_wr_pending),
.f_axi_rd_nbursts( faxi_rd_nbursts),
.f_axi_rd_outstanding(faxi_rd_outstanding),
//
// ...
);
////////////////////////////////////////////////////////////////////////
//
// AXI-lite properties
//
////////////////////////////////////////////////////////////////////////
faxil_master #(.C_AXI_DATA_WIDTH(DW), .C_AXI_ADDR_WIDTH(AW),
.F_OPT_NO_RESET(1),
.F_AXI_MAXWAIT(5),
.F_AXI_MAXDELAY(4),
.F_AXI_MAXRSTALL(0),
.F_OPT_WRITE_ONLY(OPT_WRITES && !OPT_READS),
.F_OPT_READ_ONLY(!OPT_WRITES && OPT_READS),
.F_LGDEPTH(F_AXIL_LGDEPTH))
faxil(.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
// Write address channel
.i_axi_awready(M_AXI_AWREADY),
.i_axi_awaddr( M_AXI_AWADDR),
.i_axi_awcache(4'h0),
.i_axi_awprot( M_AXI_AWPROT),
.i_axi_awvalid(M_AXI_AWVALID),
// Write data
.i_axi_wready( skidm_wready),
.i_axi_wdata( skidm_wdata),
.i_axi_wstrb( skidm_wstrb),
.i_axi_wvalid( skidm_wvalid),
// Write response
.i_axi_bresp( skidm_bresp),
.i_axi_bvalid( skidm_bvalid),
.i_axi_bready( skidm_bready),
// Read address
.i_axi_arready(M_AXI_ARREADY),
.i_axi_araddr( M_AXI_ARADDR),
.i_axi_arcache(4'h0),
.i_axi_arprot( M_AXI_ARPROT),
.i_axi_arvalid(M_AXI_ARVALID),
// Read data return
.i_axi_rresp( skidm_rresp),
.i_axi_rvalid( skidm_rvalid),
.i_axi_rdata( skidm_rdata),
.i_axi_rready( skidm_rready),
//
// Formal check variables
.f_axi_rd_outstanding(faxil_rd_outstanding),
.f_axi_wr_outstanding(faxil_wr_outstanding),
.f_axi_awr_outstanding(faxil_awr_outstanding));
////////////////////////////////////////////////////////////////////////
//
// Assume that the two write channels stay within an appropriate
// distance of each other. This is to make certain that the property
// file features are not violated, although not necessary true for
// actual operation
//
always @(*)
assert(s_axi_wready == (OPT_WRITES && faxi_wr_pending > 0));
////////////////////////////////////////////////////////////////////////
//
// Write induction properties
//
// These are extra properties necessary to pass write induction
//
always @(*)
if ((bcounts == 0)&&(!read_from_wrfifo))
assert(!skidm_bvalid || !skidm_bready);
always @(*)
if (axi_awlen > 0)
begin
assert(m_axi_awvalid);
if (axi_awlen > 1)
assert(!skids_awready);
else if (wfifo_full)
assert(!skids_awready);
else if (M_AXI_AWVALID && !M_AXI_AWREADY)
assert(!skids_awready);
end
always @(*)
assert(axi_bresp != EXOKAY);
reg [F_LGDEPTH-1:0] f_wfifo_bursts, f_wfifo_bursts_minus_one,
f_wfifo_within,
f_wfiid_bursts, f_wfiid_bursts_minus_one;
reg [IW-1:0] f_awid;
always @(posedge S_AXI_ACLK)
if (skids_awvalid && skids_awready)
f_awid = skids_awid;
////////////////////////////////////////////////////////////////////////
//
// Read induction properties
//
//
always @(*)
if (!S_AXI_RVALID && rcounts > 0)
assert(rid == S_AXI_RID);
always @(*)
if (S_AXI_RVALID && !S_AXI_RLAST)
assert(rid == S_AXI_RID);
always @(*)
if ((rcounts == 0)&&(!read_from_rdfifo))
assert(!skidm_rvalid || !skidm_rready);
always @(*)
if (axi_arlen > 0)
begin
assert(m_axi_arvalid);
assert(!skids_arready);
end
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Select only write or only read operation
//
//
generate if (!OPT_WRITES)
begin
always @(*)
begin
assume(!skids_awvalid);
assume(!skids_wvalid);
assert(M_AXI_AWVALID == 0);
assert(faxil_awr_outstanding == 0);
assert(faxil_wr_outstanding == 0);
assert(!skidm_bvalid);
assert(!S_AXI_BVALID);
end
end endgenerate
generate if (!OPT_READS)
begin
always @(*)
begin
assume(!S_AXI_ARVALID);
assert(M_AXI_ARVALID == 0);
assert(faxil_rd_outstanding == 0);
end
end endgenerate
////////////////////////////////////////////////////////////////////////
//
// Cover statements, to show performance
//
////////////////////////////////////////////////////////////////////////
//
//
generate if (OPT_WRITES)
begin
//////
//
//////
reg [3:0] cvr_write_count, cvr_write_count_simple;
initial cvr_write_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_write_count_simple <= 0;
else if (S_AXI_AWVALID && S_AXI_AWREADY && S_AXI_AWLEN == 0)
cvr_write_count_simple <= cvr_write_count_simple + 1;
initial cvr_write_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_write_count <= 0;
else if (S_AXI_AWVALID && S_AXI_AWREADY && S_AXI_AWLEN > 2)
cvr_write_count <= cvr_write_count + 1;
always @(*)
cover(cvr_write_count_simple > 6 && /* ... */ !S_AXI_BVALID);
always @(*)
cover(cvr_write_count > 2 && /* ... */ !S_AXI_BVALID);
end endgenerate
generate if (OPT_READS)
begin
//////
//
//////
reg [3:0] cvr_read_count, cvr_read_count_simple;
initial cvr_read_count_simple = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_read_count_simple <= 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY && S_AXI_ARLEN == 0)
cvr_read_count_simple <= cvr_read_count_simple + 1;
initial cvr_read_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_read_count <= 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY && S_AXI_ARLEN > 2)
cvr_read_count <= cvr_read_count + 1;
always @(*)
cover(cvr_read_count_simple > 6 && /* ... */ !S_AXI_RVALID);
always @(*)
cover(cvr_read_count > 2 && /* ... */ !S_AXI_RVALID);
end endgenerate
//
// ...
//
`undef BMC_ASSERT
`endif
// }}}
endmodule
`ifndef YOSYS
`default_nettype wire
`endif