forked from meling/urs
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathurs.go
752 lines (636 loc) · 18.7 KB
/
urs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
// Copyright 2014 Hein Meling and Haibin Zhang. All rights reserved.
// Use of this source code is governed by the MIT
// license that can be found in the LICENSE file.
// Additional coding Copyright 2014 The Monero Developers.
// Package urs implements Unique Ring Signatures, as defined in
// short version: http://csiflabs.cs.ucdavis.edu/~hbzhang/romring.pdf
// full version: http://eprint.iacr.org/2012/577.pdf
package main
// References:
// [NSA]: Suite B implementer's guide to FIPS 186-3,
// http://www.nsa.gov/ia/_files/ecdsa.pdf
// [SECG]: SECG, SEC1
// http://www.secg.org/download/aid-780/sec1-v2.pdf
import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/sha256"
"errors"
"fmt"
"io"
"math/big"
"sort"
"strings"
"sync"
)
// PublicKeyRing is a list of public keys.
type PublicKeyRing struct {
Ring []ecdsa.PublicKey
}
// NewPublicKeyRing creates a new public key ring.
// All keys added to the ring must use the same curve.
func NewPublicKeyRing(cap uint) *PublicKeyRing {
return &PublicKeyRing{make([]ecdsa.PublicKey, 0, cap)}
}
// Add adds a public key, pub to the ring.
// All keys added to the ring must use the same curve.
func (r *PublicKeyRing) Add(pub ecdsa.PublicKey) {
r.Ring = append(r.Ring, pub)
}
// Less determines which of two []ecdsa.PublicKey X values is smaller; if they are
// the same, evaluate the Y values instead.
func (r *PublicKeyRing) Less(i, j int) bool {
var isISmaller bool
iX := r.Ring[i].X
jX := r.Ring[j].X
cmp := iX.Cmp(jX)
if cmp != 0 {
isISmaller = (cmp == -1) // X equivalence
} else { // Use Y for less if X is equivalent
iY := r.Ring[i].Y
jY := r.Ring[j].Y
cmp = iY.Cmp(jY)
isISmaller = (cmp == -1)
}
return isISmaller
}
// Swap swaps two []ecdsa.PublicKey values.
func (r *PublicKeyRing) Swap(i, j int) {
r.Ring[i], r.Ring[j] = r.Ring[j], r.Ring[i]
}
// Len returns the length of ring.
func (r *PublicKeyRing) Len() int {
return len(r.Ring)
}
// Bytes returns the public key ring as a byte slice.
func (r *PublicKeyRing) Bytes() (b []byte) {
for _, pub := range r.Ring {
b = append(b, pub.X.Bytes()...)
b = append(b, pub.Y.Bytes()...)
}
return
}
func PubKeyToString(k ecdsa.PublicKey) string {
return fmt.Sprintf("X(%s)\nY(%s)\n", k.X, k.Y)
}
var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the field underlying the given
// curve using the procedure given in [NSA] A.2.1.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
params := c.Params()
b := make([]byte, params.BitSize/8+8)
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(params.N, one)
k.Mod(k, n)
k.Add(k, one)
return
}
// GenerateKey generates a public and private key pair.
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *ecdsa.PrivateKey, err error) {
k, err := randFieldElement(c, rand)
if err != nil {
return
}
priv = new(ecdsa.PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return
}
// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
type RingSign struct {
X, Y *big.Int
C, T []*big.Int
}
type BlindRingSign struct {
KX, KY *big.Int
r, s *big.Int
X, Y *big.Int
C, T []*big.Int
}
// this is just for debugging; we probably don't want this for anything else
func (k *RingSign) String() string {
var buf bytes.Buffer
for i := 0; i < len(k.C); i++ {
buf.WriteString(fmt.Sprintf("C[%d]: ", i))
buf.WriteString(k.C[i].String())
buf.WriteString("\n")
buf.WriteString(fmt.Sprintf("T[%d]: ", i))
buf.WriteString(k.T[i].String())
buf.WriteString("\n")
}
return fmt.Sprintf("URS:\nX=%s\nY=%s\n%s", k.X, k.Y, buf.String())
}
// FromBase58 returns a ring signature from a Base58 string, to the RingSign
// struct.
func (k *RingSign) FromBase58(sig string) error {
k.X = nil
k.Y = nil
k.C = nil
k.T = nil
// [0] --> X
// [1] --> Y
// [2] --> C
// [3] --> T
stringArray := strings.Split(sig[1:], "+")
if len(stringArray) != 4 {
err := errors.New("Failure to parse string signature for Base58 encoded" +
" ring signature! The signature did not contain 4 elements split by " +
"+'s.")
return err
}
cArray := strings.Split(stringArray[2], "&")
tArray := strings.Split(stringArray[3], "&")
XB58 := Base58(stringArray[0])
k.X = XB58.Base582Big()
YB58 := Base58(stringArray[1])
k.Y = YB58.Base582Big()
for i, c := range cArray {
if i == len(cArray)-1 {
continue
}
cB58 := Base58(c)
k.C = append(k.C, cB58.Base582Big())
}
for i, t := range tArray {
if i == len(cArray)-1 {
continue
}
tB58 := Base58(t)
k.T = append(k.T, tB58.Base582Big())
}
if (k.X == nil) || (k.Y == nil) || (k.C == nil) || (k.T == nil) {
err := errors.New("Failure to parse string signature for Base58 encoded" +
" ring signature!")
return err
}
return nil
}
// ToBase58 returns a ring signature as a Base58 string.
func (k *RingSign) ToBase58() string {
var buffer bytes.Buffer
buffer.WriteString("1") // Version
buffer.WriteString(string(Big2Base58(k.X)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.Y)))
buffer.WriteString("+")
for _, c := range k.C {
buffer.WriteString(string(Big2Base58(c)))
buffer.WriteString("&")
}
buffer.WriteString("+")
for _, t := range k.T {
buffer.WriteString(string(Big2Base58(t)))
buffer.WriteString("&")
}
return buffer.String()
}
// FromBase58 returns a ring signature from a Base58 string, to the RingSign
// struct.
func (k *BlindRingSign) FromBase58(sig string) error {
k.KX = nil
k.KY = nil
k.r = nil
k.s = nil
k.X = nil
k.Y = nil
k.C = nil
k.T = nil
// [0] --> KX
// [1] --> KY
// [2] --> r
// [3] --> s
// [4] --> X
// [5] --> Y
// [6] --> C
// [7] --> T
stringArray := strings.Split(sig[1:], "+")
if len(stringArray) != 8 {
err := errors.New("Failure to parse string signature for Base58 encoded" +
" blind ring signature! The signature did not contain 8 elements " +
" split by +'s.")
return err
}
cArray := strings.Split(stringArray[6], "&")
tArray := strings.Split(stringArray[7], "&")
KXB58 := Base58(stringArray[0])
k.KX = KXB58.Base582Big()
KYB58 := Base58(stringArray[1])
k.KY = KYB58.Base582Big()
rB58 := Base58(stringArray[2])
k.r = rB58.Base582Big()
sB58 := Base58(stringArray[3])
k.s = sB58.Base582Big()
XB58 := Base58(stringArray[4])
k.X = XB58.Base582Big()
YB58 := Base58(stringArray[5])
k.Y = YB58.Base582Big()
for i, c := range cArray {
if i == len(cArray)-1 {
continue
}
cB58 := Base58(c)
k.C = append(k.C, cB58.Base582Big())
}
for i, t := range tArray {
if i == len(cArray)-1 {
continue
}
tB58 := Base58(t)
k.T = append(k.T, tB58.Base582Big())
}
if (k.KX == nil) || (k.KY == nil) || (k.r == nil) || (k.s == nil) {
err := errors.New("Failure to parse string signature for Base58 encoded" +
" blind ring signature!")
return err
}
if (k.X == nil) || (k.Y == nil) || (k.C == nil) || (k.T == nil) {
err := errors.New("Failure to parse string signature for Base58 encoded" +
" blind ring signature!")
return err
}
return nil
}
// ToBase58 returns a ring signature as a Base58 string.
func (k *BlindRingSign) ToBase58() string {
var buffer bytes.Buffer
buffer.WriteString("2") // Version
buffer.WriteString(string(Big2Base58(k.KX)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.KY)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.r)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.s)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.X)))
buffer.WriteString("+")
buffer.WriteString(string(Big2Base58(k.Y)))
buffer.WriteString("+")
for _, c := range k.C {
buffer.WriteString(string(Big2Base58(c)))
buffer.WriteString("&")
}
buffer.WriteString("+")
for _, t := range k.T {
buffer.WriteString(string(Big2Base58(t)))
buffer.WriteString("&")
}
return buffer.String()
}
func hashG(c elliptic.Curve, m []byte) (hx, hy *big.Int) {
h := sha256.New()
h.Write(m)
d := h.Sum(nil)
hx, hy = c.ScalarBaseMult(d) // g^H'()
return
}
// hashAllq hashes all the provided inputs using sha256.
// This corresponds to hashq() or H'() over Zq
func hashAllq(mR []byte, ax, ay, bx, by []*big.Int) (hash *big.Int) {
h := sha256.New()
h.Write(mR)
for i := 0; i < len(ax); i++ {
h.Write(ax[i].Bytes())
h.Write(ay[i].Bytes())
h.Write(bx[i].Bytes())
h.Write(by[i].Bytes())
}
hash = new(big.Int).SetBytes(h.Sum(nil))
return
}
// hashAllq hashes all the provided inputs using sha256.
// This corresponds to hashq() or H'() over Zq
func hashAllqc(c elliptic.Curve, mR []byte, ax, ay, bx, by []*big.Int) (hash *big.Int) {
h := sha256.New()
h.Write(mR)
for i := 0; i < len(ax); i++ {
h.Write(ax[i].Bytes())
h.Write(ay[i].Bytes())
h.Write(bx[i].Bytes())
h.Write(by[i].Bytes())
}
hash = hashToInt(h.Sum(nil), c)
return
}
// Sign signs an arbitrary length message (which should NOT be the hash of a
// larger message) using the private key, priv and the public key ring, R.
// It returns the signature as a struct of type RingSign.
// The security of the private key depends on the entropy of rand.
// The public keys in the ring must all be using the same curve.
func Sign(rand io.Reader,
priv *ecdsa.PrivateKey,
R *PublicKeyRing,
m []byte) (rs *RingSign, err error) {
sort.Sort(R)
s := R.Len()
ax := make([]*big.Int, s, s)
ay := make([]*big.Int, s, s)
bx := make([]*big.Int, s, s)
by := make([]*big.Int, s, s)
c := make([]*big.Int, s, s)
t := make([]*big.Int, s, s)
pub := priv.PublicKey
curve := pub.Curve
N := curve.Params().N
mR := append(m, R.Bytes()...)
hx, hy := hashG(curve, mR) // H(mR)
var id int
var wg sync.WaitGroup
sum := new(big.Int).SetInt64(0)
for j := 0; j < s; j++ {
wg.Add(1)
go func(j int) {
defer wg.Done()
c[j], err = randFieldElement(curve, rand)
if err != nil {
return
}
t[j], err = randFieldElement(curve, rand)
if err != nil {
return
}
if R.Ring[j] == pub {
id = j
rb := t[j].Bytes()
ax[id], ay[id] = curve.ScalarBaseMult(rb) // g^r
bx[id], by[id] = curve.ScalarMult(hx, hy, rb) // H(mR)^r
} else {
ax1, ay1 := curve.ScalarBaseMult(t[j].Bytes()) // g^tj
ax2, ay2 := curve.ScalarMult(R.Ring[j].X, R.Ring[j].Y, c[j].Bytes()) // yj^cj
ax[j], ay[j] = curve.Add(ax1, ay1, ax2, ay2)
w := new(big.Int)
w.Mul(priv.D, c[j])
w.Add(w, t[j])
w.Mod(w, N)
bx[j], by[j] = curve.ScalarMult(hx, hy, w.Bytes()) // H(mR)^(xi*cj+tj)
// TODO may need to lock on sum object.
sum.Add(sum, c[j]) // Sum needed in Step 3 of the algorithm
}
}(j)
}
wg.Wait()
// Step 3, part 1: cid = H(m,R,{a,b}) - sum(cj) mod N
hashmRab := hashAllq(mR, ax, ay, bx, by)
// hashmRab := hashAllqc(curve, mR, ax, ay, bx, by)
c[id].Sub(hashmRab, sum)
c[id].Mod(c[id], N)
// Step 3, part 2: tid = ri - cid * xi mod N
cx := new(big.Int)
cx.Mul(priv.D, c[id])
t[id].Sub(t[id], cx) // here t[id] = ri (initialized inside the for-loop above)
t[id].Mod(t[id], N)
hsx, hsy := curve.ScalarMult(hx, hy, priv.D.Bytes()) // Step 4: H(mR)^xi
return &RingSign{hsx, hsy, c, t}, nil
}
// Verify verifies the signature in rs of m using the public key ring, R. Its
// return value records whether the signature is valid.
func Verify(R *PublicKeyRing, m []byte, rs *RingSign) bool {
sort.Sort(R)
s := R.Len()
if s == 0 {
return false
}
c := R.Ring[0].Curve
N := c.Params().N
x, y := rs.X, rs.Y
if x.Sign() == 0 || y.Sign() == 0 {
return false
}
if x.Cmp(N) >= 0 || y.Cmp(N) >= 0 {
return false
}
if !c.IsOnCurve(x, y) { // Is tau (x,y) on the curve
return false
}
mR := append(m, R.Bytes()...)
hx, hy := hashG(c, mR)
sum := new(big.Int).SetInt64(0)
ax := make([]*big.Int, s, s)
ay := make([]*big.Int, s, s)
bx := make([]*big.Int, s, s)
by := make([]*big.Int, s, s)
var wg sync.WaitGroup
for j := 0; j < s; j++ {
// Check that cj,tj is in range [0..N]
if rs.C[j].Cmp(N) >= 0 || rs.T[j].Cmp(N) >= 0 {
return false
}
wg.Add(1)
go func(j int) {
defer wg.Done()
cb := rs.C[j].Bytes()
tb := rs.T[j].Bytes()
ax1, ay1 := c.ScalarBaseMult(tb) // g^tj
ax2, ay2 := c.ScalarMult(R.Ring[j].X, R.Ring[j].Y, cb) // yj^cj
ax[j], ay[j] = c.Add(ax1, ay1, ax2, ay2)
bx1, by1 := c.ScalarMult(hx, hy, tb) // H(mR)^tj
bx2, by2 := c.ScalarMult(x, y, cb) // tau^cj
bx[j], by[j] = c.Add(bx1, by1, bx2, by2)
}(j)
sum.Add(sum, rs.C[j])
}
wg.Wait()
hashmRab := hashAllq(mR, ax, ay, bx, by)
// hashmRab := hashAllqc(c, mR, ax, ay, bx, by)
hashmRab.Mod(hashmRab, N)
sum.Mod(sum, N)
return sum.Cmp(hashmRab) == 0
}
// BlindSign signs an arbitrary length message (which should NOT be the hash of a
// larger message) using the private key, priv and the public key ring, R.
// It returns the signature as a struct of type RingSign.
// The security of the private key depends on the entropy of rand.
// The public keys in the ring must all be using the same curve.
func BlindSign(rand io.Reader,
priv *ecdsa.PrivateKey,
R *PublicKeyRing,
m []byte) (rs *BlindRingSign, err error) {
curve := priv.PublicKey.Curve
N := curve.Params().N
// Generate the ephemeral keypair and add it to the given keypair
kpe, err := ecdsa.GenerateKey(priv.Curve, rand)
kpeX := kpe.PublicKey.X
kpeY := kpe.PublicKey.Y
kpeD := kpe.D
kpeXAddPX, kpeYAddPY := priv.Curve.Add(priv.PublicKey.X,
priv.PublicKey.Y,
kpeX,
kpeY)
tempPubkey := ecdsa.PublicKey{priv.PublicKey.Curve, kpeXAddPX, kpeYAddPY}
kpeDAddPrivD := new(big.Int)
kpeDAddPrivD.Add(priv.D, kpeD)
kpeDAddPrivD.Mod(kpeDAddPrivD, N)
tempKeypair := ecdsa.PrivateKey{tempPubkey, kpeDAddPrivD}
priv = &tempKeypair
keyringAddEphemeral := NewPublicKeyRing(uint(R.Len()))
// Generate our one-time use keyring
for _, pubkey := range R.Ring {
xn, yn := curve.Add(pubkey.X, pubkey.Y, kpeX, kpeY)
kpeAddPubkey := ecdsa.PublicKey{priv.PublicKey.Curve, xn, yn}
if CmpPubKey(&tempKeypair.PublicKey, &kpeAddPubkey) == true {
keyringAddEphemeral.Add(priv.PublicKey)
} else {
keyringAddEphemeral.Add(kpeAddPubkey)
}
}
R = keyringAddEphemeral
sort.Sort(R)
s := R.Len()
ax := make([]*big.Int, s, s)
ay := make([]*big.Int, s, s)
bx := make([]*big.Int, s, s)
by := make([]*big.Int, s, s)
c := make([]*big.Int, s, s)
t := make([]*big.Int, s, s)
pub := priv.PublicKey
mR := append(m, R.Bytes()...)
hx, hy := hashG(curve, mR)
var id int
var wg sync.WaitGroup
sum := new(big.Int).SetInt64(0)
for j := 0; j < s; j++ {
wg.Add(1)
go func(j int) {
defer wg.Done()
c[j], err = randFieldElement(curve, rand)
if err != nil {
return
}
t[j], err = randFieldElement(curve, rand)
if err != nil {
return
}
if R.Ring[j] == pub {
id = j
rb := t[j].Bytes()
ax[id], ay[id] = curve.ScalarBaseMult(rb) // g^r
bx[id], by[id] = curve.ScalarMult(hx, hy, rb) // H(mR)^r
} else {
ax1, ay1 := curve.ScalarBaseMult(t[j].Bytes()) // g^tj
ax2, ay2 := curve.ScalarMult(R.Ring[j].X, R.Ring[j].Y, c[j].Bytes()) // yj^cj
ax[j], ay[j] = curve.Add(ax1, ay1, ax2, ay2)
w := new(big.Int)
w.Mul(priv.D, c[j])
w.Add(w, t[j])
w.Mod(w, N)
bx[j], by[j] = curve.ScalarMult(hx, hy, w.Bytes()) // H(mR)^(xi*cj+tj)
// TODO may need to lock on sum object.
sum.Add(sum, c[j]) // Sum needed in Step 3 of the algorithm
}
}(j)
}
wg.Wait()
// Step 3, part 1: cid = H(m,R,{a,b}) - sum(cj) mod N
hashmRab := hashAllq(mR, ax, ay, bx, by)
// hashmRab := hashAllqc(curve, mR, ax, ay, bx, by)
c[id].Sub(hashmRab, sum)
c[id].Mod(c[id], N)
// Step 3, part 2: tid = ri - cid * xi mod N
cx := new(big.Int)
cx.Mul(priv.D, c[id])
t[id].Sub(t[id], cx) // here t[id] = ri (initialized inside the for-loop above)
t[id].Mod(t[id], N)
hsx, hsy := curve.ScalarMult(hx, hy, priv.D.Bytes()) // Step 4: H(mR)^xi
// Step 4: Sign hsx+hsy with ephemeral key
hsxCatHsy := append(hsx.Bytes(), hsy.Bytes()...)
kpeSignR, kpeSignS, err := ecdsa.Sign(rand, kpe, hsxCatHsy)
if err != nil {
return nil, err
}
return &BlindRingSign{kpeX, kpeY, kpeSignR, kpeSignS, hsx, hsy, c, t}, nil
}
// BlindVerify verifies the signature in rs of m using the public key ring, R. Its
// return value records whether the signature is valid.
func BlindVerify(R *PublicKeyRing, m []byte, rs *BlindRingSign) bool {
kpeX := rs.KX
kpeY := rs.KY
curve := R.Ring[0].Curve
kpe := ecdsa.PublicKey{curve, kpeX, kpeY}
// To start, verify signature of hsxCatHsy with the ephemeral keypair
hsxCatHsy := append(rs.X.Bytes(), rs.Y.Bytes()...)
if !(ecdsa.Verify(&kpe, hsxCatHsy, rs.r, rs.s)) {
return false
}
// Generate our one-time use keyring for verification
keyringAddEphemeral := NewPublicKeyRing(uint(R.Len()))
for _, pubkey := range R.Ring {
xn, yn := curve.Add(pubkey.X, pubkey.Y, kpeX, kpeY)
kpeAddPubkey := ecdsa.PublicKey{curve, xn, yn}
keyringAddEphemeral.Add(kpeAddPubkey)
}
R = keyringAddEphemeral
sort.Sort(R)
s := R.Len()
if s == 0 {
return false
}
c := R.Ring[0].Curve
N := c.Params().N
x, y := rs.X, rs.Y
if x.Sign() == 0 || y.Sign() == 0 {
return false
}
if x.Cmp(N) >= 0 || y.Cmp(N) >= 0 {
return false
}
if !c.IsOnCurve(x, y) { // Is tau (x,y) on the curve
return false
}
mR := append(m, R.Bytes()...)
hx, hy := hashG(c, mR)
sum := new(big.Int).SetInt64(0)
ax := make([]*big.Int, s, s)
ay := make([]*big.Int, s, s)
bx := make([]*big.Int, s, s)
by := make([]*big.Int, s, s)
var wg sync.WaitGroup
for j := 0; j < s; j++ {
// Check that cj,tj is in range [0..N]
if rs.C[j].Cmp(N) >= 0 || rs.T[j].Cmp(N) >= 0 {
return false
}
wg.Add(1)
go func(j int) {
defer wg.Done()
cb := rs.C[j].Bytes()
tb := rs.T[j].Bytes()
ax1, ay1 := c.ScalarBaseMult(tb) // g^tj
ax2, ay2 := c.ScalarMult(R.Ring[j].X, R.Ring[j].Y, cb) // yj^cj
ax[j], ay[j] = c.Add(ax1, ay1, ax2, ay2)
bx1, by1 := c.ScalarMult(hx, hy, tb)
bx2, by2 := c.ScalarMult(x, y, cb) // tau^cj
bx[j], by[j] = c.Add(bx1, by1, bx2, by2)
}(j)
sum.Add(sum, rs.C[j])
}
wg.Wait()
hashmRab := hashAllq(mR, ax, ay, bx, by)
// hashmRab := hashAllqc(c, mR, ax, ay, bx, by)
hashmRab.Mod(hashmRab, N)
sum.Mod(sum, N)
return sum.Cmp(hashmRab) == 0
}