-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathIK_debug.py
141 lines (115 loc) · 5.33 KB
/
IK_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from sympy import *
from time import time
from mpmath import radians
import tf
'''
Format of test case is [ [[EE position],[EE orientation as quaternions]],[WC location],[joint angles]]
You can generate additional test cases by setting up your kuka project and running `$ roslaunch kuka_arm forward_kinematics.launch`
From here you can adjust the joint angles to find thetas, use the gripper to extract positions and orientation (in quaternion xyzw) and lastly use link 5
to find the position of the wrist center. These newly generated test cases can be added to the test_cases dictionary.
'''
test_cases = {1:[[[2.16135,-1.42635,1.55109],
[0.708611,0.186356,-0.157931,0.661967]],
[1.89451,-1.44302,1.69366],
[-0.65,0.45,-0.36,0.95,0.79,0.49]],
2:[[[-0.56754,0.93663,3.0038],
[0.62073, 0.48318,0.38759,0.480629]],
[-0.638,0.64198,2.9988],
[-0.79,-0.11,-2.33,1.94,1.14,-3.68]],
3:[[[-1.3863,0.02074,0.90986],
[0.01735,-0.2179,0.9025,0.371016]],
[-1.1669,-0.17989,0.85137],
[-2.99,-0.12,0.94,4.06,1.29,-4.12]],
4:[],
5:[]}
def test_code(test_case):
## Set up code
## Do not modify!
x = 0
class Position:
def __init__(self,EE_pos):
self.x = EE_pos[0]
self.y = EE_pos[1]
self.z = EE_pos[2]
class Orientation:
def __init__(self,EE_ori):
self.x = EE_ori[0]
self.y = EE_ori[1]
self.z = EE_ori[2]
self.w = EE_ori[3]
position = Position(test_case[0][0])
orientation = Orientation(test_case[0][1])
class Combine:
def __init__(self,position,orientation):
self.position = position
self.orientation = orientation
comb = Combine(position,orientation)
class Pose:
def __init__(self,comb):
self.poses = [comb]
req = Pose(comb)
start_time = time()
########################################################################################
##
## Insert IK code here!
theta1 = 0
theta2 = 0
theta3 = 0
theta4 = 0
theta5 = 0
theta6 = 0
##
########################################################################################
########################################################################################
## For additional debugging add your forward kinematics here. Use your previously calculated thetas
## as the input and output the position of your end effector as your_ee = [x,y,z]
## (OPTIONAL) YOUR CODE HERE!
## End your code input for forward kinematics here!
########################################################################################
## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
your_wc = [1,1,1] # <--- Load your calculated WC values in this array
your_ee = [1,1,1] # <--- Load your calculated end effector value from your forward kinematics
########################################################################################
## Error analysis
print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))
# Find WC error
if not(sum(your_wc)==3):
wc_x_e = abs(your_wc[0]-test_case[1][0])
wc_y_e = abs(your_wc[1]-test_case[1][1])
wc_z_e = abs(your_wc[2]-test_case[1][2])
wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
print ("\nWrist error for x position is: %04.8f" % wc_x_e)
print ("Wrist error for y position is: %04.8f" % wc_y_e)
print ("Wrist error for z position is: %04.8f" % wc_z_e)
print ("Overall wrist offset is: %04.8f units" % wc_offset)
# Find theta errors
t_1_e = abs(theta1-test_case[2][0])
t_2_e = abs(theta2-test_case[2][1])
t_3_e = abs(theta3-test_case[2][2])
t_4_e = abs(theta4-test_case[2][3])
t_5_e = abs(theta5-test_case[2][4])
t_6_e = abs(theta6-test_case[2][5])
print ("\nTheta 1 error is: %04.8f" % t_1_e)
print ("Theta 2 error is: %04.8f" % t_2_e)
print ("Theta 3 error is: %04.8f" % t_3_e)
print ("Theta 4 error is: %04.8f" % t_4_e)
print ("Theta 5 error is: %04.8f" % t_5_e)
print ("Theta 6 error is: %04.8f" % t_6_e)
print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
\nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
\nconfirm whether your code is working or not**")
print (" ")
# Find FK EE error
if not(sum(your_ee)==3):
ee_x_e = abs(your_ee[0]-test_case[0][0][0])
ee_y_e = abs(your_ee[1]-test_case[0][0][1])
ee_z_e = abs(your_ee[2]-test_case[0][0][2])
ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
print ("End effector error for y position is: %04.8f" % ee_y_e)
print ("End effector error for z position is: %04.8f" % ee_z_e)
print ("Overall end effector offset is: %04.8f units \n" % ee_offset)
if __name__ == "__main__":
# Change test case number for different scenarios
test_case_number = 1
test_code(test_cases[test_case_number])