-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
348 lines (310 loc) · 12.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import nibabel
import importlib
import dash
from dash import dcc, html
import numpy as np
from dash.dependencies import Input, Output, State
import mne
from mne.minimum_norm import read_inverse_operator, apply_inverse
import plotly.graph_objs as go
from utils.helper_functions import mesh_edges, smoothing_matrix
drc = importlib.import_module("utils.dash_reusable_components")
figs = importlib.import_module("utils.figures")
app = dash.Dash(
__name__,
meta_tags=[
{"name": "viewport", "content": "width=device-width, initial-scale=1.0"}
],
)
server = app.server
DEFAULT_COLORSCALE = [[0, 'rgb(12,51,131)'], [0.25, 'rgb(10,136,186)'],
[0.5, 'rgb(242,211,56)'], [0.75, 'rgb(242,143,56)'], [1, 'rgb(217,30,30)']]
DEFAULT_COLORSCALE_NO_INDEX = [ea[1] for ea in DEFAULT_COLORSCALE]
def plotly_triangular_mesh(vertices, faces, intensities=None, colorscale="Viridis",
flatshading=False, showscale=False, reversescale=False, plot_edges=False):
''' vertices = a numpy array of shape (n_vertices, 3)
faces = a numpy array of shape (n_faces, 3)
intensities can be either a function of (x,y,z) or a list of values '''
x, y, z = vertices.T
I, J, K = faces.T
mesh = dict(
type='mesh3d',
hoverinfo='none',
x=x, y=y, z=z,
colorscale=colorscale,
intensity=intensities,
flatshading=flatshading,
i=I, j=J, k=K,
name='',
showscale=showscale
)
mesh.update(lighting=dict(ambient=0.8,
diffuse=1,
fresnel=0.1,
specular=1,
roughness=0.1,
facenormalsepsilon=1e-6,
vertexnormalsepsilon=1e-12))
mesh.update(lightposition=dict(x=100,
y=200,
z=0))
if showscale is True:
mesh.update(colorbar=dict(thickness=20, ticklen=4, len=0.75))
if plot_edges is False: # the triangle sides are not plotted
return [mesh]
else: # plot edges
# define the lists Xe, Ye, Ze, of x, y, resp z coordinates of edge end points for each triangle
# None separates data corresponding to two consecutive triangles
tri_vertices = vertices[faces]
Xe = []
Ye = []
Ze = []
for T in tri_vertices:
Xe += [T[k % 3][0] for k in range(4)] + [None]
Ye += [T[k % 3][1] for k in range(4)] + [None]
Ze += [T[k % 3][2] for k in range(4)] + [None]
# define the lines to be plotted
lines = dict(type='scatter3d',
x=Xe,
y=Ye,
z=Ze,
mode='lines',
name='',
line=dict(color='rgb(70,70,70)', width=1)
)
return [mesh, lines]
data_path = mne.datasets.sample.data_path()
fname_inv = data_path / 'MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
fname_evoked = data_path / 'MEG/sample/sample_audvis-ave.fif'
freesurfer_path = data_path / "subjects/sample/surf/"
lh = nibabel.freesurfer.io.read_geometry(freesurfer_path / "lh.inflated")[0]
rh = nibabel.freesurfer.io.read_geometry(freesurfer_path / "rh.inflated")[0]
rh[:, 0] = rh[:, 0] + 85
snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM" # use dSPM method (could also be MNE or sLORETA)
inverse_operator = read_inverse_operator(fname_inv)
evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
src = inverse_operator['src']
lh_points = lh
rh_points = rh
points = np.r_[lh_points, rh_points]
points *= 170
vertices = np.r_[src[0]['vertno'], lh_points.shape[0] + src[1]['vertno']]
use_faces = np.r_[src[0]['tris'], lh_points.shape[0] + src[1]['tris']]
adj_mat = mesh_edges(use_faces)
smooth_mat = smoothing_matrix(vertices, adj_mat)
# Compute inverse solution
pick_ori = "normal" # Get signed values to see the effect of sign filp
stc = apply_inverse(evoked, inverse_operator, lambda2, method,
pick_ori=pick_ori)
index_time = np.abs(stc.data).mean(0).argmax()
data = plotly_triangular_mesh(points, use_faces, smooth_mat * stc.data[:, index_time],
colorscale=DEFAULT_COLORSCALE, flatshading=False,
showscale=False, reversescale=False, plot_edges=False)
axis_template_time = dict(
showspikes='across+toaxis',
spikedash='solid',
spikemode='across',
spikesnap='cursor',
showline=True,
showgrid=True,
zeroline=False,
showbackground=False,
backgroundcolor="rgb(200, 200, 230)",
gridcolor="white",
zerolinecolor="white")
axis_template = dict(
showspikes=None,
title="",
zeroline=False,
showline=False,
showgrid=False,
showticklabels=False,
showlabel=False,
showbackground=True,
backgroundcolor="rgb(0, 0, 0)",
gridcolor="rgb(0, 0, 0)",
zerolinecolor="rgb(0, 0, 0)")
plot_layout = dict(
title='',
margin=dict(t=0, b=0, l=0, r=0),
displayModeBar=False,
font=dict(size=12, color='white'),
width=650,
height=650,
showlegend=False,
plot_bgcolor='black',
paper_bgcolor='black',
scene=dict(xaxis=axis_template,
yaxis=axis_template,
zaxis=axis_template,
aspectratio=dict(x=1, y=1.2, z=1),
camera=dict(eye=dict(x=1.25, y=1.25, z=1.25)),
annotations=[]
)
)
plot_layout_time = dict(
title='',
font=dict(size=12, color='white'),
width=650,
height=650,
showlegend=False,
displayModeBar=False,
plot_bgcolor='black',
paper_bgcolor='black',
hovermode='closest',
xaxis={'showspikes': True},
scene=dict(xaxis=axis_template_time,
yaxis=axis_template_time,
annotations=[]
)
)
app.layout = html.Div(
children=[
# .container class is fixed, .container.scalable is scalable
html.Div(
className="banner",
children=[
# Change App Name here
html.Div(
className="container scalable",
children=[
# Change App Name here
html.H2(
id="banner-title",
children=[
html.A(
"MNE Source Space Explorer",
href="https://github.com/mne-python",
style={
"text-decoration": "none",
"color": "inherit",
},
)
],
),
html.A(
id="banner-logo",
children=[
html.Img(src=app.get_asset_url("mne_logo.png"))
],
),
],
)
],
),
html.Div(
id="body",
className="container scalable",
children=[
html.Div(
id="app-container",
# className="row",
children=[
html.Div(
# className="three columns",
id="left-column",
children=[
drc.Card(
id="first-card",
children=[
drc.NamedDropdown(
name="Select Subject",
id="dropdown-select-dataset",
options=[
{"label": "sample", "value": "sample"},
],
clearable=False,
searchable=False,
value="sample",
),
drc.NamedSlider(
name="Time",
id="slider-dataset-sample-size",
min=evoked.times.min() * 1000,
max=evoked.times.max() * 1000,
step=len(evoked.times),
marks={ii: '{0:.0f}'.format(ii) if ii == evoked.times[0] * 1000 else
'{0:.0f}'.format(ii) if not (i_l % 100) else ''
for i_l, ii in enumerate(evoked.times * 1000)},
value=int(len(evoked.times) / 2),
),
drc.NamedSlider(
name="Threshold",
id="slider-dataset-noise-level",
min=0,
max=1,
marks={
i: str(i)
for i in [0, 0.25, 0.5, 0.75, 1]
},
step=0.1,
value=0.2,
),
],
),
],
), html.Div([
dcc.Graph(id='g1', figure={
'data': [go.Scatter(
x=evoked.times * 1000,
y=evoked.data[index, :].T,
mode='lines',
hoverinfo='x+y'
) for index in np.arange(2, 306, 3)] + [go.Scatter(
x=[evoked.times[index_time] * 1000, evoked.times[index_time] * 1000],
y=[-np.abs(evoked.data[2:306:3]).max(), np.abs(evoked.data[2:306:3]).max()],
mode='lines',
line=dict(color='white', width=6),
hoverinfo='skip'
)],
'layout': plot_layout_time, })
], className="six columns"),
html.Div(
[
dcc.Graph(
id="brain-graph",
figure={
"data": data,
"layout": plot_layout,
},
config={"editable": True, "scrollZoom": False},
)
],
className="graph__container",
),
],
)
],
),
]
)
@app.callback(Output('brain-graph', 'figure'),
[Input('slider-dataset-sample-size', 'value')],
[State('brain-graph', 'figure')])
def update_graph(selected_dropdown_value, figure):
index = (np.abs(stc.times * 1000 - selected_dropdown_value)).argmin()
data = plotly_triangular_mesh(points, use_faces, smooth_mat * stc.data[:, index],
colorscale=DEFAULT_COLORSCALE, flatshading=False,
showscale=False, reversescale=False, plot_edges=False)
figure["data"] = data
figure["layout"] = plot_layout
return figure
@app.callback(Output('g1', 'figure'),
[Input('slider-dataset-sample-size', 'value')],
[State('g1', 'figure')])
def update_graph(selected_dropdown_value, figure):
index_time = (np.abs(stc.times * 1000 - selected_dropdown_value)).argmin()
figure["data"][-1] = go.Scatter(
x=[evoked.times[index_time] * 1000, evoked.times[index_time] * 1000],
y=[-np.abs(evoked.data[2:306:3]).max(), np.abs(evoked.data[2:306:3]).max()],
mode='lines',
line=dict(color='white', width=6),
hoverinfo='skip'
)
figure["layout"] = plot_layout_time
return figure
# Running the server
if __name__ == "__main__":
app.run_server(debug=True)