-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPoissonCalib-7Apr2021.Rmd
1207 lines (943 loc) · 44.5 KB
/
PoissonCalib-7Apr2021.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "All gBlock data"
author: "copyright 2021 Mary Lesperance"
date: '`r Sys.Date()`'
output:
html_document:
number_sections: yes
toc: yes
toc_depth: 3
pdf_document:
toc: yes
toc_depth: 3
word_document:
toc: yes
toc_depth: 3
geometry: margin=.5in
fontsize: 11pt
---
<!-- Turned off numbering for Supplemental File -->
<!-- \pagenumbering{gobble} -->
# Instructions
This file recreates the analyses in the publication,
'A Statistical Model for Calibration and Computation of Detection
and Quantification Limits for Low Copy Number Environmental
DNA samples' by Lesperance, Allison, Bergman, Hocking, Helbing, *eDNA*, 2021.
* Create a folder called Outputs in your working directory.
* Put files in working directory: PoissonCalib-Functions-7April2021.R, GEDWG_LOD_DATA3.csv (Klymus data), AssaySummary-ML.csv (Klymus results)
* Data set csv file requirements. Columns: Target, Lab, Cq, Sq
* For nondetects, set Cq to be empty or NA value
* For negative controls, set Sq to be empty or 0 or NA value
* DO NOT DUPLICATE Target names over different Labs!!
* The script uses observations with nonempty data and where phat <1 (num detect<num technical replicates)
* Only the SQ's up to the first one with phat==1 are used.
* Allows for variable numbers of SQ levels per Target.
* Assumes SQs == NA are zero, i.e. are negative controls.
* Adds in Negative Control (ntc) zeroes (24/(48 for Monroe) technical replicates).
* The code uses the R function optim. A convergence code 0 indicates successful completion.
* Ignore warnings if results are sensible.
```{r Packages, include=FALSE}
# Packages used
packages = c("dplyr","ggplot2","knitr","kableExtra","RColorBrewer")
## Load or install&load
package.check <- lapply(packages,
FUN = function(x) {
if (!require(x, character.only = TRUE)) {
install.packages(x, dependencies = TRUE)
library(x, character.only = TRUE)
}
}
)
## Source the functions
source("PoissonCalib-Functions-7April2021.R")
```
```{r setup, include=FALSE}
#ML See EcoF-PoissonBlank-gBlockAll-17June2020.Rmd
knitr::opts_chunk$set(echo = TRUE, fig.height=7, fig.width=6.5)
knitr::opts_chunk$set(fig.pos = '!h')
sink.indicator <- FALSE #sinks results to files if TRUE
```
```{r READIN, include=FALSE}
## READIN paragraph adapted from Merkes, Christopher <[email protected]>
## Used only to read in the data.
## Read in your data file (MODIFY FILE NAME AS NEEDED):
DAT <- read.csv("GEDWG_LOD_DATA3.csv") #gBlock data
dim(DAT)
## Create an analysis log file:
write(paste0("Analysis started: ",date(),"\n\n"),file="Outputs\\Analysis Log.txt")
## Check the data:
if(sum(colnames(DAT)=="Target")!=1) { #Is there a "Target" column?
A <- grep("target", colnames(DAT), ignore.case=T)
if(length(A)==1) { colnames(DAT)[A] <- "Target" } #Rename target column if it is mispelled but can be identified and there is only 1.
if(length(A)!=1) { write("There is a problem with the 'Target' column.\n\n",file="Analysis Log.txt",append=T) } #Add error message to analysis log.
if(length(A)>1) { cat("ERROR: multiple 'Target' columns detected.",colnames(DAT)[A],sep="\n") }
if(length(A)==0) { print("ERROR: cannot detect 'Target' column.") }
}
if(sum(colnames(DAT)=="Lab")!=1) { #Is there a "Lab" column?
A <- grep("lab", colnames(DAT), ignore.case=T)
if(length(A)==1) { colnames(DAT)[A] <- "Lab" } #Rename Lab column if it is mispelled but can be identified and there is only 1.
if(length(A)!=1) { write("There is a problem with the 'Lab' column.\n\n",file="Analysis Log.txt",append=T) } #Add error message to analysis log.
if(length(A)>1) { cat("ERROR: multiple 'Lab' columns detected.",colnames(DAT)[A],sep="\n") }
if(length(A)==0) { print("ERROR: cannot detect 'Lab' column.") }
}
if(sum(colnames(DAT)=="Cq")!=1) { #Is there a "Cq" column?
A <- grep("cq|ct|cycle",colnames(DAT),ignore.case=T)
if(length(A)==1) { colnames(DAT)[A] <- "Cq" } #Rename cq column if it is mispelled but can be identified and there is only 1.
if(length(A)!=1) { write("There is a problem with the 'Cq' column.\n\n",file="Analysis Log.txt",append=T) } #Add error message to analysis log.
if(length(A)>1) { cat("ERROR: multiple 'Cq' columns detected.",colnames(DAT)[A],sep="\n") }
if(length(A)==0) { print("ERROR: cannot detect 'Cq' column.") }
}
if(sum(colnames(DAT)=="SQ")!=1) { #Is there a "SQ" column?
A <- grep("sq|copies|starting|quantity",colnames(DAT),ignore.case=T)
if(length(A)==1) { colnames(DAT)[A] <- "SQ" } #Rename SQ column if it is mispelled but can be identified and there is only 1.
if(length(A)!=1) { write("There is a problem with the 'SQ' column.\n\n",file="Analysis Log.txt",append=T) } #Add error message to analysis log.
if(length(A)>1) { cat("ERROR: multiple 'SQ' columns detected.",colnames(DAT)[A],sep="\n") }
if(length(A)==0) { print("ERROR: cannot detect 'SQ' column.") }
}
## Ensure data is in the proper format:
DAT$Target <- as.factor(DAT$Target)
DAT$Lab <- as.factor(DAT$Lab) #ML
DAT$Cq <- suppressWarnings(as.numeric(as.character(DAT$Cq))) #Non-numerical values (i.e. negative wells) will be converted to NAs
DAT$SQ <- suppressWarnings(as.numeric(as.character(DAT$SQ))) #Non-numerical values (i.e. NTC) will be converted to NAs
## ML Remove positive controls
dim(DAT)
DAT <- DAT[DAT$Content!='Pos Ctrl',]
dim(DAT)
## ML assume SQs == NA are zero - negative controls
DAT$SQ[is.na(DAT$SQ)] <- 0
dim(DAT)
summary(DAT)
DAT.df <- data.frame(DAT)
## ML Chris omitted negative controls from data set
## ML negative controls will be added to CERC, Monroe, UVIC below
```
# Process/Summarize samples by Lab; Compute the Poisson estimates of SQ
Hindson et al "High-Throughput Droplet Digital PCR System for Absolute
Quantitation of DNA Copy Number", Anal. Chem., 2011, 83 (22), pp 8604–8610
use a Poisson approximation for quantitation.
Before that, Dube et al. 2008, "Mathematical analysis of copy number
variation in a DNA sample
using digital PCR on a nanofluidic device", PloS One, Vol 3, Issue 8, e2876,
model the number of molecules in each chamber as a Poisson process, giving the
relationship between $p$ and $\lambda$.
```{r detect, echo=FALSE}
## Summarize data by (Target, SQ), detect=#detections, n=#tech reps
DAT.Tar.SQ <- DAT.df %>%
group_by(Target, SQ) %>%
summarise(detect=sum(!is.na(Cq)), n=n(), Cqmean=mean(Cq, na.rm=TRUE),
Lab=Lab[1] )
DAT.Tar.SQ <- droplevels(data.frame(DAT.Tar.SQ))
dim(DAT.Tar.SQ); cat('dim, before negative controls added')
summary(DAT.Tar.SQ)
uLabs <- unique(DAT.Tar.SQ$Lab) #unique labs
## ML check the data for each Lab
# if(sink.indicator){
# sink(file='gBlock-SummariesRaw.txt', split=TRUE)}
# for(i in uLabs){
# print(knitr::kable(DAT.Tar.SQ[DAT.Tar.SQ$Lab==i,], format="pandoc",
# digits=3, caption=i), results="asis")
# }
# if(sink.indicator){ sink()}
## All labs had negative controls, some of which were omitted in gBlock file
## If lab has no technical replicates with SQ=0,
## Add in Negative Control (ntc) zeroes (24/(48 for Monroe) technical replicates)
ntc.rows <- tibble(Target=factor(0), SQ=0, detect=0, n=0, Cqmean=0, Lab=factor(0))
for (i in unique(DAT.Tar.SQ$Target)){
nn=24
if ((DAT.Tar.SQ$Lab[DAT.Tar.SQ$Target==i])[1]=="Monroe") nn=48
if(min(DAT.Tar.SQ$SQ[DAT.Tar.SQ$Target==i])!=0){
ntc.rows <- ntc.rows %>% add_row(Target=i,
SQ=0, detect=0, n=nn, Cqmean=NA,
Lab=(DAT.Tar.SQ$Lab[DAT.Tar.SQ$Target==i])[1])
}
}
ntc.rows <- data.frame(ntc.rows[-1,]) #remove the first row
# DAT.Tar.SQ <- DAT.Tar.SQ %>% add_row(ntc.rows) #no longer works
suppressWarnings(DAT.Tar.SQ <- DAT.Tar.SQ %>% bind_rows(ntc.rows))
DAT.Tar.SQ$Target <- as.factor(DAT.Tar.SQ$Target)
DAT.Tar.SQ$Lab <- as.factor(DAT.Tar.SQ$Lab)
DAT.Tar.SQ <- arrange(DAT.Tar.SQ, Lab, Target, SQ) #sort data by SQ in Target in Lab
#write.csv(DAT.Tar.SQ, "DAT.Tar.SQ.csv") #write the data to file
## Add variables to data set: L10.SQ, phat, ...
DAT.Tar.SQ <- within(DAT.Tar.SQ, {
L10.SQ <- log10(SQ)
phat <- detect/n #sample proportion detect
vphat <- phat*(1-phat)/n #var of phat
lamhat <- -log(1-phat)
vlamhat <- phat/n/(1-phat) #var of lamhat using the delta method
sdlamhat <- sqrt(vlamhat) #sd of lamhat using the delta method
MElamhat <- 1.96*sdlamhat #margin of error for lambda hat using delta method
}
)
dim(DAT.Tar.SQ); cat('dim, Added 24/48 negative controls for Targets with zero ntc')
# head(DAT.Tar.SQ)
## All Targets and Labs **DO NOT DUPLICATE Target names over Labs!!
uLabs <- unique(DAT.Tar.SQ$Lab)
uTargets <- unique(DAT.Tar.SQ$Target)
nTargets <- length(uTargets)
uLabsTargets <- unique(DAT.Tar.SQ[,c('Lab','Target')])
uLabsTargets$Lab <- as.character(uLabsTargets$Lab)
#ensure ulabsTargets in same order as uTargets
uLabsTargets <- uLabsTargets[match(uLabsTargets$Target, uTargets),]
uLabsTargets.names <- apply(uLabsTargets, 1, paste, collapse=', ')
## Print summary tables
if(sink.indicator){
sink(file='gBlock-Summaries.txt', split=TRUE)}
for(i in uLabs){
print(knitr::kable(DAT.Tar.SQ[DAT.Tar.SQ$Lab==i, c(1:4, 12)], format="pandoc", digits=3, caption=i),
results="asis")
}
if(sink.indicator){ sink()}
```
```{r ExactTransCI, echo=FALSE}
## Exact 95% Binomial Confidence intervals => backtransform given alpha and beta
## Binomial bound from Julious 2005, Stat in Medicine
DAT.Tar.SQ <- within(DAT.Tar.SQ, {
CIexphat.lower <- 1 - qbeta(.975, n-detect+1, detect) #exact phat bounds
CIexphat.upper <- qbeta(.975, detect+1, n-detect)
## Use transformed exact phat bounds
Lamhatex.Lower <- -log(1 - CIexphat.lower)
Lamhatex.Upper <- -log(1 - CIexphat.upper)
}
)
```
# Plot the Poisson estimates (and CI) of SQ for levels that had non-detects
Only the first levels of SQ that had non-detects are analyzed.
Blue line is least squares linear regression line.
*ML* ??will error if all phats==1
```{r PlotPois, warning=FALSE, echo=FALSE}
#pdf('Outputs\\lamhat.pdf')
#postscript('\\Outputs\\lamhat.eps')
if(nTargets>3) par(mfrow=c(2,2))
if(nTargets==2) par(mfrow=c(1,2))
## Use observations with nonempty data and where phat <1
## Only the SQ's before the first one with phat==1 are used
## Allows for variable numbers of SQ levels per Target
nndetect <- vector("list", nTargets)
nrowTarget <- rep(0, length=nTargets)
for(i in 1:nTargets) {
Target.dat <- subset(DAT.Tar.SQ, Target==uTargets[i])
bSQ <- !is.na(Target.dat$phat)
lastSQ <- as.logical(cumprod(Target.dat$phat!=1 & bSQ))
## removes first observations with SQ with phat=1 and larger SQs
Target.dat <- Target.dat[lastSQ,]
nndetect[i] <- list(Target.dat )
nrowTarget[i] <- nrow(Target.dat)
if(nrow(nndetect[[i]]) < 2) {cat(paste('Too few values for ', uTargets[i])); next}
maxSQ <- max(Target.dat$SQ)
maxlamhat <- max(Target.dat$lamhat)
plot(Target.dat$SQ, Target.dat$lamhat, xlog=TRUE, ylab='Lambda hat',
xlab='Starting copy number',
ylim=c(0, maxlamhat), xlim=c(0, maxSQ), main=uLabsTargets.names[i])
## Transformed Exact CI
arrows(Target.dat$SQ, Target.dat$Lamhatex.Lower, Target.dat$SQ,
Target.dat$Lamhatex.Upper,
length=0.05, angle=90, code=3)
## overlay simple regression line and R-squared
jlm <- lm(lamhat ~ SQ, data=Target.dat)
abline(jlm, col=2)
legend("topleft", paste('lm Rsq=',round(summary(jlm)$r.squared, 2)), bty="n")
cat("\n\n")
}
#dev.off()
par(mfrow=c(1,1))
```
\pagebreak
# Supplemental Material
This file contains the outputs from all 29 data sets from Klymus et al. (2019) whose data are summarized in Table 4 of the manuscript. Results from both no intercept and intercept models are presented.
# Estimate Poisson models - no intercept model
```{r MLEfit0s, warning=FALSE, echo=FALSE, fig.height=4.5, fig.width=6.5}
#pdf('Outputs\\MLfit0.pdf')
#postscript('Outputs\\MLfit.eps')
par(mfrow=c(1,2))
## List of results - 0 in name denotes fits through the origin
Calib.fit.estimates0 <- vector("list", nTargets) #list of fit estimates
names(Calib.fit.estimates0) <- uTargets
Calib.fit.all0 <- vector("list", nTargets) #list of fits
Calib.fit.LLRp0 <- vector("numeric", nTargets)
names(Calib.fit.LLRp0) <- uTargets
Calib.fit.res0 <- matrix(0, nrow=nTargets, ncol=4)
rownames(Calib.fit.res0) <- uTargets
colnames(Calib.fit.res0) <- c("convergence", "LLR", "degf","Pval")
Calib.fit.res0 <- data.frame(Calib.fit.res0)
for(i in 1:nTargets){
if(nrow(nndetect[[i]]) < 3) {Calib.fit.estimates0[[i]] <- NULL
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
Target.dat <- nndetect[[i]]
# Could use following for starting value
# j.glm <- glm(cbind(n-detect, detect)~SQ-1, data=Target.dat, family=binomial(link='log'))
Calib.fit <- optim(par=c(1), fn=CalibOr.LLik, nd=Target.dat$detect,
S=Target.dat$SQ, nn=Target.dat$n,
method="BFGS", control=list(fnscale=-1), gr=CalibOr.dLLik,
hessian=TRUE)
Calib.fit.all0[[i]] <- Calib.fit
## Variance estimates
if(nrow(Target.dat)==2) {
Calib.fit.Var <- matrix(0, 2, 2) #singular hessian for 2 observations
} else {
Calib.fit.Var <- solve(-Calib.fit$hessian)
}
cmat <- cbind(Calib.fit$par, sqrt(diag(Calib.fit.Var)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[, 3]))
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
if (nrow(cmat)==1) {rownames(cmat) <- c("beta")
} else rownames(cmat) <- c("alpha","beta")
Calib.fit.estimates0[[i]] <- cmat
## Likelihood ratio statistic and pvalue for goodnes-of-fit of the model
Calib.degf <- nrow(Target.dat) - length(Calib.fit$par)
#SQ=0 do not contribute to the likelihood for no intercept model
bool <- Target.dat$SQ !=0
Calib.LLR <- 2*(Bin.LLik(Target.dat$detect[bool], Target.dat$n[bool])
- Calib.fit$value)
Calib.LLR.pv <- pchisq(Calib.LLR, Calib.degf, lower.tail = FALSE)
Calib.fit.LLRp0[i] <- Calib.LLR.pv
Calib.fit.res0[i,] <- c(Calib.fit$convergence, Calib.LLR, Calib.degf, Calib.LLR.pv)
# if(sink.indicator){
# sink(file(paste("Outputs\\ML",uTargets[i],".txt", sep=""),
# encoding="UTF-8"), split=TRUE)
# }
# cat("\n", as.character(uTargets[i]), "\n")
# cat("Convergence=", Calib.fit$convergence, "\n")
# printCoefmat(cmat, digits=3)
# cat('LLR test stat=', Calib.LLR, ', df= ', Calib.degf, ', p-value=', Calib.LLR.pv, "\n\n")
# if(sink.indicator) sink()
## Compute fitted values for ML model
Calib.fitted <- Calib.fit$par * Target.dat$SQ
# Plot calibration curve on lambda scale
maxSQ <- max(Target.dat$SQ)
maxlamhat <- max(Target.dat$lamhat)
plot(Target.dat$SQ, Target.dat$lamhat, xlog=TRUE,
ylab='Lambda hat', xlab='Starting copy number',
ylim=c(0, maxlamhat), xlim=c(0, maxSQ), las=1,
main=uTargets[i])
abline(0, Calib.fit$par, col=4)
legend("topleft", legend=c('ML fit'), lty=1, col=4, bty="n")
arrows(Target.dat$SQ, Target.dat$Lamhatex.Lower, Target.dat$SQ,
Target.dat$Lamhatex.Upper,
length=0.05, angle=90, code=3)
## Plot calibration curve on phat scale
## Compute minSQ such that phat~=1 (1-phat = .99)
## sqs <- seq(0, maxSQ)
maxSQa <- max( -( log(.01))/Calib.fit$par, maxSQ)
sqs <- seq(0, maxSQa, by=.1)
Calib.phat <- 1 - exp(-( Calib.fit$par * sqs))
plot(sqs, Calib.phat, xlog=TRUE,
ylab='Proportion detect', xlab='Starting copy number', type='l', col=4, las=1,
ylim=c(0, 1), xlim=c(0, maxSQa), main=uTargets[i])
points(Target.dat$SQ, Target.dat$phat)
legend("topleft", legend=c('ML fit'), lty=1, col=4, bty="n")
cat('\n\n\n')
if(sink.indicator){
sink(file(paste("Outputs\\ML",uTargets[i],".txt", sep=""),
encoding="UTF-8"), split=TRUE)
}
cat("\n", as.character(uTargets[i]), "\n")
cat("Convergence=", Calib.fit$convergence, "\n")
printCoefmat(cmat, digits=3)
cat('LLR test stat=', Calib.LLR, ', df= ', Calib.degf, ', p-value=', Calib.LLR.pv, "\n\n")
if(sink.indicator) sink()
knitr::asis_output("\n\\newpage\n")
}
#dev.off()
par(mfrow=c(1,1))
```
\newpage
# Estimate predicted Sq given number detects and technical replicates - no intercept (not shown)
The estimated SQ is easily obtained for given new values of nn0=number of replicates,
nd0=number detected and the estimated slope betaS
as: Shat <- -(log((nn0 - nd0)/nn0)) / betaS[1]
The standard errors are obtained from the Hessian matrix
(or via the function CalibS0Or.ddLLik()) .
```{r MLES0fits0, warning=FALSE, echo=FALSE, eval=FALSE, include=FALSE}
#Calibration estimate of S0 given new nd0=number detected, nn0=number replicates
# includes standard errors and p-values
# Values of (nd0, nn0) such that nd0/nn0 < 1 - exp(-alpha_hat)
CalibS0.fit.estimates0 <- vector("list", nTargets) #list of fits including test value
for(i in 1:nTargets){
nd0 <- 32; nn0 <- 96 #test number detects, number technical replicates
# nd0 <- 3; nn0 <- 8
# nd0 <- 1; nn0 <- 3
# i <- 5 # for manuscript MYPI-6t
if(nrow(nndetect[[i]]) < 3) {CalibS0.fit.estimates0[[i]] <- NULL
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
Target.dat <- nndetect[[i]]
CalibS0.fit <- optim(par=c(1, 3), fn=CalibS0Or.LLik, nd=Target.dat$detect,
S=Target.dat$SQ, nn=Target.dat$n, nd0=nd0, nn0=nn0,
method="BFGS", control=list(fnscale=-1), gr=CalibS0Or.dLLik,
hessian=TRUE)
CalibS0.fit.Var <- solve(-CalibS0.fit$hessian)
betaS <- CalibS0.fit$par
cmat <- cbind(betaS, sqrt(diag(CalibS0.fit.Var)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[, 3]))
if (nrow(cmat)==2) {rownames(cmat) <- c("beta", "SQ0")
} else rownames(cmat) <- c("alpha","beta", "SQ0")
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
cat('\n\n','ML estimate of SQ for nd0 number of detects and nn0 replicates', '\n')
if(sink.indicator) sink(file(paste("Outputs\\MLSQ",UTargets[i],".txt", sep=""),
encoding="UTF-8"), split=TRUE)
cat(as.character(uTargets[i]), 'y0=', nd0, 'n0=' , nn0, "\n\n")
printCoefmat(cmat, digits=3)
if(sink.indicator) sink()
CalibS0.fit.estimates0[[i]] <- cmat
}
```
\newpage
# Estimate Poisson models - intercept model
```{r MLEfits, warning=FALSE, echo=FALSE, fig.height=4.5, fig.width=6.5}
#pdf('Outputs\\MLfit.pdf')
#postscript('Outputs\\MLfit.eps')
# if(nTargets>3) par(mfrow=c(2,2))
# if(nTargets==2) par(mfrow=c(1,2))
par(mfrow=c(1,2))
# List of results
Calib.fit.estimates <- vector("list", nTargets) #list of fit estimates
names(Calib.fit.estimates) <- uTargets
Calib.fit.all <- vector("list", nTargets) #list of fits all
Calib.fit.LLRp <- vector("numeric", nTargets)
names(Calib.fit.LLRp) <- uTargets
Calib.fit.res <- matrix(0, nrow=nTargets, ncol=4)
rownames(Calib.fit.res) <- uTargets
colnames(Calib.fit.res) <- c("convergence", "LLR", "degf","Pval")
Calib.fit.res <- data.frame(Calib.fit.res)
for(i in 1:nTargets){
if(nrow(nndetect[[i]]) < 3) {Calib.fit.estimates[[i]] <- NULL
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
Target.dat <- nndetect[[i]]
jlm <- lm(lamhat ~ SQ, data=Target.dat) #starting values for alpha and beta
Calib.fit <- optim(par=pmax(c(0.01, 0.01), coef(jlm)), fn=Calib.LLik,
nd=Target.dat$detect,
S=Target.dat$SQ, nn=Target.dat$n, gr=Calib.dLLik,
method="BFGS", control=list(fnscale=-1), hessian=TRUE)
Calib.fit.all[[i]] <- Calib.fit
if(nrow(Target.dat)==2) {
Calib.fit.Var <- matrix(0, 2, 2) #singular hessian for 2 observations
} else {
Calib.fit.Var <- solve(-Calib.fit$hessian)
}
cmat <- cbind(Calib.fit$par, sqrt(diag(Calib.fit.Var)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[, 3]))
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
if (nrow(cmat)==1) {rownames(cmat) <- c("beta")
} else rownames(cmat) <- c("alpha","beta")
Calib.fit.estimates[[i]] <- cmat
#Likelihood ratio statistic and pvalue for goodnes-of-fit of the model
Calib.degf <- nrow(Target.dat) - length(Calib.fit$par)
Calib.LLR <- 2*(Bin.LLik(Target.dat$detect, Target.dat$n)
- Calib.fit$value)
Calib.LLR.pv <- pchisq(Calib.LLR, Calib.degf, lower.tail = FALSE)
Calib.fit.LLRp[i] <- Calib.LLR.pv
Calib.fit.res[i,] <- c(Calib.fit$convergence, Calib.LLR, Calib.degf, Calib.LLR.pv)
# if(sink.indicator){
# sink(file(paste("Outputs\\ML",uTargets[i],".txt", sep=""),
# encoding="UTF-8"), split=TRUE)
# }
# cat("\n", as.character(uTargets[i]), "\n")
# cat("Convergence=", Calib.fit$convergence, "\n")
# printCoefmat(cmat, digits=3)
# cat('LLR test stat=', Calib.LLR, ', df= ', Calib.degf, ', p-value=', Calib.LLR.pv, "\n\n")
# if(sink.indicator) sink()
#Compute fitted values for ML model
Calib.fitted <- Calib.fit$par[1] + Calib.fit$par[2]* Target.dat$SQ
# Plot calibration curve on lambda scale
maxSQ <- max(Target.dat$SQ)
maxlamhat <- max(Target.dat$lamhat)
plot(Target.dat$SQ, Target.dat$lamhat, xlog=TRUE,
ylab='Lambda hat', xlab='Starting copy number',
ylim=c(0, maxlamhat), xlim=c(0, maxSQ), las=1,
main=uTargets[i])
abline(Calib.fit$par[1], Calib.fit$par[2], col=4)
legend("topleft", legend=c('ML fit'), lty=1, col=4, bty="n")
arrows(Target.dat$SQ, Target.dat$Lamhatex.Lower, Target.dat$SQ,
Target.dat$Lamhatex.Upper,
length=0.05, angle=90, code=3)
# Plot calibration curve on phat scale
# Compute minSQ such that phat~=1
maxSQa <-max( -(Calib.fit$par[1] + log(.01))/Calib.fit$par[2], maxSQ)
sqs <- seq(0, maxSQa, by=.1)
Calib.phat <- 1 - exp(-(Calib.fit$par[1] + Calib.fit$par[2] * sqs))
plot(sqs, Calib.phat, xlog=TRUE,
ylab='Proportion detect', xlab='Starting copy number', type='l', col=4, las=1,
ylim=c(0, 1), xlim=c(0, maxSQa), main=uTargets[i])
points(Target.dat$SQ, Target.dat$phat)
legend("topleft", legend=c('ML fit'), lty=1, col=4, bty="n")
cat("\n\n\n")
if(sink.indicator){
sink(file(paste("Outputs\\ML",uTargets[i],".txt", sep=""),
encoding="UTF-8"), split=TRUE)
}
cat("\n", as.character(uTargets[i]), "\n")
cat("Convergence=", Calib.fit$convergence, "\n")
printCoefmat(cmat, digits=3)
cat('LLR test stat=', Calib.LLR, ', df= ', Calib.degf, ', p-value=', Calib.LLR.pv, "\n\n")
if(sink.indicator) sink()
knitr::asis_output("\n\\newpage\n")
}
#dev.off()
par(mfrow=c(1,1))
```
\newpage
# Estimate predicted Sq given number detects and technical replicates - intercept model (not shown)
```{r MLES0fits, warning=FALSE, echo=FALSE, eval=FALSE, include=FALSE}
#Calibration estimate of S0 given new nd0=number detected, nn0=number replicates
# includes standard errors and p-values
# Values of (nd0, nn0) such that nd0/nn0 < 1 - exp(-alpha_hat)
CalibS0.fit.estimates <- vector("list", nTargets) #list of fits including test value
for(i in 1:nTargets){
nd0 <- 32; nn0 <- 96 #test number detects, number technical replicates
if(nrow(nndetect[[i]]) < 3) {CalibS0.fit.estimates[[i]] <- NULL
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
Target.dat <- nndetect[[i]]
jlm <- lm(lamhat ~ SQ, data=Target.dat) #starting values for alpha and beta
jpar <- pmax(c(0.01, 0.01), coef(jlm))
Stilde <- -(log((nn0 - nd0)/nn0) + jpar[1]) / jpar[2]
CalibS0.fit <- optim(par=c(jpar, Stilde),
fn=CalibS0.LLik, nd=Target.dat$detect,
S=Target.dat$SQ, nn=Target.dat$n, nd0=nd0, nn0=nn0,
control=list(fnscale=-1), method="BFGS",
gr=CalibS0.dLLik, hessian=TRUE)
CalibS0.fit.Var <- solve(-CalibS0.fit$hessian)
betaS <- CalibS0.fit$par
hess <- CalibS0.ddLLik(betaS, Target.dat$detect, Target.dat$SQ,
Target.dat$n, nd0, nn0)
cmat <- cbind(betaS, sqrt(diag(CalibS0.fit.Var)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[, 3]))
if (nrow(cmat)==2) {rownames(cmat) <- c("beta", "SQ0")
} else rownames(cmat) <- c("alpha","beta", "SQ0")
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
cat('\n\n','ML estimate of SQ for nd0 number of detects and nn0 replicates', '\n')
if(sink.indicator) sink(file(paste("Outputs\\MLSQ",UTargets[i],".txt", sep=""),
encoding="UTF-8"), split=TRUE)
cat(as.character(uTargets[i]), 'y0=', nd0, 'n0=' , nn0, "\n\n")
printCoefmat(cmat, digits=3)
if(sink.indicator) sink()
# Shat <- -(log((nn0 - nd0)/nn0) + betaS[1]) / betaS[2]
# cat('\n', 'Shat=', Shat)
# cat('\n', 'SEs ', sqrt(diag(solve(-hess))))
# cat('\n', 'Marginal ', (1/sqrt(-hess[3,3])))
# cat('\n', 'Gradient ', CalibS0.dLLik(betaS, Target.dat$detect, Target.dat$SQ,
# Target.dat$n, nd0, nn0), '\n')
CalibS0.fit.estimates[[i]] <- cmat
}
```
\newpage
# Determine Lc, Ld, Lq - no intercept model
Follows Lavagnini and Magno 2007, Mass Spectrometry Reviews
*The notation in the paper was changed from the Lavagnini 2007 paper and is shown in brackets here.*
- Lc (*LOB Limit of blank*) = critical level is the assay signal above which a response is reliably attributed to the presence of analyte
- Ld (*Ld = expected number detects out of NN replicates at concentration LOD*) = signal corresponding to an analyte concentration xd (*=LOD Limit of Detection*) level which may be a priori expected to be recognized
- Lq = quantification limit is a signal with a precision which satisfies an expected value ($=\gamma_Q$)
Lc corresponds to a critical response level or a false positive rate,
i.e. critical number of detects given NN replicates,
above which we would reject the null hypothesis that the concentration/copy number is zero at
alpha = alphaLc ($=\gamma_{FP}$). It is the critical response level corresponding to the false positive rate
of alphaLc. Essentially, the test is positive if the Y~Binomial(m, p) > Lc.
The False Positive Rate is P(Y > Lc | S=0).
Ld is computed to correspond to the false negative rate, beta = betaLd ($=\gamma_{FN}$) here. It is computed so
that the probability of observing a new (unknown concentration) response less than or equal to
Lc is less than or equal to betaLd. The probability of observing Lc or less detects if the
concentration is xd (*=LOD Limit of Detection*) or more is less than or equal to betaLd. The values of Lc depend on
the number of replicates, NN, so xd does as well. Ld is the expected number of detects at
values xd and NN replicates. False negative rate Ld computation: P(Y <= Lc | p_xd) <= betaLd,
and solve for xd.
Lq is less well defined. The literature suggests using Lq = beta0 + 10 s.e.(beta0), but this
uses the normality assumption. Other literature suggests using the "analyte concentration xq (*=LOQ Limit of Quantification*)
for which the experimental relative standard deviation of the responses reaches a fixed level ($=\gamma_Q$),
for example, the level 0.1." Lavagnini and Magno 2007. I interpret the term "relative
standard deviation" to mean the coefficient of variation, CV = sd/mean.
In the exercise below, we use the fits from the ML models to estimate the Lc, Ld and Lq, for
various values of NN replicates for a new observation, i.e. a new (unknown concentration) response
number of detects.
```{r LcLdLqNN0, echo=FALSE}
# No intercept model computations - Here Lc==0
# Lc computation: P(Y > Lc | S=0) <= alphaLc
# where Y ~ Bin(m, p=1 - exp(-betas[1]))
# to incorporate estimation uncertaintly in betas[1], use upper limit of conf int
# i.e. Y ~ Bin(m, p=1 - exp(-(betas[1] + 1.96 * s.e.(betas[1])))
# Ld computation: P(Y <= Lc | p_xd) <= betaLd
# use relationship between Binomial and Beta distribution, p 278 Bain
# Lq computation: (Forootan 2017) choose level, Sj, such that CV<=gammaLq
# not clear which scale: response, back-transformed values, ... ?
#
##* Note in R: The quantile is defined as the smallest value x such
## that F(x) ≥ p, where F is the distribution function.
## Set values for alphaLC, betaLd, gammaLq
alphaLc <- betaLd <- .05; gammaLq <- .20
NN <- c(3, 8,16,24,32,48,64,96) #test number of replicates
#set up tables for manuscript output
Lc.all0 <- matrix(0, nrow=nTargets, ncol=length(NN))
row.names(Lc.all0) <- uTargets
colnames(Lc.all0) <- paste(NN)
xdd.all0 <- xd.all0 <- xd_upper.all0 <- xd_lower.all0 <- xq.all0 <- xq_upper.all0 <-
xq_lower.all0 <- Lc.all0
for(i in 1:nTargets){
#use beta estimated from fits above
if(nrow(nndetect[[i]]) < 3) {
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
betas <- (Calib.fit.estimates0[[i]])[,1]
#ML Takes into account uncertainty in new observation and s.e. of betas
betas.upper <- betas + 1.96 * (Calib.fit.estimates0[[i]])[,2]
betas.lower <- betas - 1.96 * (Calib.fit.estimates0[[i]])[,2]
#Want: P(Y > Lc | S=0) <= alphaLc where Y ~ Bin(m, p=1 - exp(-betas[1]))
#Lc at xc=0 values for new observation
# For no intercept model, P(Y = 0 | S=0)=1 and P(i'th tech rep detect| S=0)=0
# Lc==0, and the P(Y > Lc | S=0) <= alphaLc
# since P(Y > 0 | S=0)==0.
# We are saying that sample is negative if Y=0 and positive if Y>0
Lc <- rep(0, length(NN))
#Want xd, P(Y <= Lc | p_xd) <= betaLd
#Ld and xd calculation
pxd <- 1 - qbeta(betaLd, NN-Lc, Lc+1) #proportion detected
Ld <- NN * pxd
xd <- ( - log(1 - pxd)) / betas #concentration
xdlower <- ( - log(1 - pxd)) / betas.upper
xdupper <- ( - log(1 - pxd)) / betas.lower
names(pxd) <- names(xd) <- names(xdlower) <- names(xdupper) <- paste(NN)
#Compute confidence interval for xd
xd.all0[i,] <- xd
xd_upper.all0[i,] <- xdupper
xd_lower.all0[i,] <- xdlower
#Compute model based xq
xq <- -(log(1 - 1/(1 + gammaLq^2*NN)))/betas
names(xq) <- paste(NN)
#Compute model based xq using lower estimates of beta - upper bound for xq
xq_lower <- -(log(1 - 1/(1 + gammaLq^2*NN)))/betas.lower
names(xq_lower) <- paste(NN)
#Compute model based xq using upper estimates of beta
xq_upper <- -(log(1 - 1/(1 + gammaLq^2*NN)))/betas.upper
names(xq_upper) <- paste(NN)
xq.all0[i,] <- xq
xq_lower.all0[i,] <- xq_lower
xq_upper.all0[i,] <- xq_upper
}
#For a given p_hat, one can compute the sample size m required to attain a
# CV <= gammaLq, as m >= (1-phat)/(phat*gammaLq)
```
# Determine Lc, Ld, Lq - intercept model
```{r LcLdLqNN, echo=FALSE}
# Lc computation: P(Y > Lc | S=0) <= alphaLc - intercept model computations
# where Y ~ Bin(m, p=1 - exp(-betas[1]))
# to incorporate estimation uncertaintly in betas[1], use upper limit of conf int
# i.e. Y ~ Bin(m, p=1 - exp(-(betas[1] + 1.96 * s.e.(betas[1])))
# Ld computation: P(Y <= Lc | p_xd) <= betaLd
# use relationship between Binomial and Beta distribution, p 278 Bain
# Lq computation: (Forootan 2017) choose level, Sj, such that CV<=gammaLq
# not clear which scale: response, back-transformed values, ... ?
#
##* Note in R: The quantile is defined as the smallest value x such
## that F(x) ≥ p, where F is the distribution function.
## Set values for alphaLC, betaLd, gammaLq
alphaLc <- betaLd <- .05; gammaLq <- .20
NN <- c(3, 8,16,24,32,48,64,96) #test number of replicates
#set up tables for manuscript output
Lc.all <- matrix(0, nrow=nTargets, ncol=length(NN))
row.names(Lc.all) <- uTargets
colnames(Lc.all) <- paste(NN)
Lc.upper.all <- xd.all <- xd_upper.all <- xd_lower.all <-
xq.all <- xq_lower.all <- xq_upper.all <- Lc.all
for(i in 1:nTargets){
#use beta estimated from fits above
if(nrow(nndetect[[i]]) < 3) {
cat(paste('Too few values for ', uTargets[i]), '\n')
next}
betas <- (Calib.fit.estimates[[i]])[,1]
#ML Takes into account uncertainty in new observation and s.e. of betas
betas.upper <- betas + 1.96 * (Calib.fit.estimates[[i]])[,2]
betas.lower <- pmax(0, betas - 1.96 * (Calib.fit.estimates[[i]])[,2])
#Want: P(Y > Lc | S=0) <= alphaLc where Y ~ Bin(m, p=1 - exp(-betas[1]))
#Lc at xc=0 values for new observation
p.new <- 1 - exp(-betas[1])
Lc.new <- qbinom(1 - alphaLc, size=NN, prob=p.new)
names(Lc.new) <- paste(NN)
Lc.all[i,] <- Lc.new
#Lc.upper at xc=0 values for new observation, incl s.e. of betas
p.upper <- 1 - exp(-betas.upper[1])
Lc.upper <- qbinom(1 - alphaLc, size=NN, prob=p.upper)
names(Lc.upper) <- paste(NN)
Lc.upper.all[i,] <- Lc.upper
#Want xd, P(Y <= Lc | p_xd) <= betaLd
#Ld and xd calculation
pxd <- 1 - qbeta(betaLd, NN-Lc.new, Lc.new+1) #proportion detected
Ld <- NN * pxd
xd <- (-betas[1] - log(1 - pxd)) / betas[2] #concentration
names(pxd) <- names(xd) <- paste(NN)
# pxd_upper <- 1 - qbeta(betaLd, NN-Lc.upper, Lc.upper+1) #proportion detected\
# Ld_upper <- NN * pxd_upper
# xd_upper <- (-betas[1] - log(1 - pxd_upper)) / betas[2] #concentration
xd_lower <- pmax(0, (-betas.upper[1] - log(1 - pxd)) / betas.upper[2])
xd_upper <- (-betas.lower[1] - log(1 - pxd)) / betas.lower[2]
names(xd_upper) <- names(xd_lower) <- paste(NN)
xd.all[i,] <- xd
xd_upper.all[i,] <- xd_upper
xd_lower.all[i,] <- xd_lower
#Compute model based xq
xq <- -(betas[1] + log(1 - 1/(1 + gammaLq^2*NN)))/betas[2]
names(xq) <- paste(NN)
#Compute model based xq using lower estimates of beta
xq_lower <- -(betas.lower[1] + log(1 - 1/(1 + gammaLq^2*NN)))/betas.lower[2]
names(xq_lower) <- paste(NN)
#Compute model based xq using upper estimates of beta
xq_upper <- -(betas.upper[1] + log(1 - 1/(1 + gammaLq^2*NN)))/betas.upper[2]
names(xq_upper) <- paste(NN)
xq.all[i,] <- xq
xq_lower.all[i,] <- xq_lower
xq_upper.all[i,] <- xq_upper
}
#For a given p_hat, one can compute the sample size m required to attain a
# CV <= gammaLq, as m >= (1-phat)/(phat*gammaLq)
```
\pagebreak
# Estimates, Lc, Ld, Lq for a given number of technical reps NN[NNi]
Choose the model (intercept versus no intercept) with the best LLR test fit.
```{r ChooseModel, echo=FALSE}
# Set the index into NN which is defined in chunk LcLdLqNN0 and LcLdLqNN
# NNi <- 2 corresponds to the 2nd entry of NN
NNi <- 2
#cat('Limits intercept model for N=', NN[NNi])
xdxq.all <- cbind(Lc=Lc.all[,NNi],
# LcUp=Lc.upper.all[,NNi],
SdLow=xd_lower.all[,NNi],
Sd=xd.all[,NNi], SdUp=xd_upper.all[,NNi],
SqLow=xq_upper.all[,NNi],
Sq=xq.all[,NNi], SqUp=xq_lower.all[,NNi])
#cat('Limits for no intercept model for N=', NN[NNi])
xdxq.all0 <- cbind(Lc=0, SdLow=xd_lower.all0[,NNi],
Sd=xd.all0[,NNi], SdUp=xd_upper.all0[,NNi],
SqLow=xq_upper.all0[,NNi],
Sq=xq.all0[,NNi], SqUp=xq_lower.all0[,NNi])
#Include alpha and beta estimates in table
alphabeta.se <- alphabeta0.se <- matrix(0, nrow=nTargets, ncol=4)
colnames(alphabeta.se) <- c("alpha","aSE", "beta", "bSE")
colnames(alphabeta0.se) <- c("alpha","aSE", "beta", "bSE")
rownames(alphabeta0.se) <- uTargets
for (i in 1:nTargets){
if(nrowTarget[i]>2){
alphabeta.se[i,1:2] <- Calib.fit.estimates[[i]][1, 1:2]
alphabeta.se[i, 3:4] <- Calib.fit.estimates[[i]][2, 1:2]
alphabeta0.se[i, 3:4] <- Calib.fit.estimates0[[i]][1, 1:2]
}
}
Calib.choice <- Calib.fit.LLRp > Calib.fit.LLRp0
xdxq.choice <- cbind(InterModel=Calib.choice, alphabeta0.se, xdxq.all0)
xdxq.choice[Calib.choice, 6:12] <- xdxq.all[Calib.choice,]
xdxq.choice[Calib.choice, 2:5] <- alphabeta.se[Calib.choice,]
# NNi <- 2 This is set above
cat('Limits for best choice model for N=', NN[NNi], '\n')
print(round(xdxq.choice[nrowTarget>2,], digits=2))
```
\pagebreak
# Tables and Graphs for the manuscript
Include MYPI-6t and eASMO9, eFISH1, eONKI4 in paper.
Index into uTargets (5, 25, 27, 31)
```{r Manuscript, echo=FALSE, eval=TRUE, include=TRUE}
# Include MYPI-6t and eASMO9, eFISH1, eONKI4 in paper. (5, 25, 27, 31)
ManuTargets <- c(5, 25, 27, 31)
Manusink <- FALSE #writes to output files when set to TRUE
#Manusink <- TRUE
if(Manusink){
sink(file(paste("Outputs\\gBlockLimits.txt", sep=""),
encoding="UTF-8"), split=TRUE)
}
xdxq.choice.PR <- xdxq.choice[nrowTarget>2, -1]
xdxq.choice.PR <- xdxq.choice.PR[order(row.names(xdxq.choice.PR)), ]
colnames(xdxq.choice.PR)[6:11] <- c('LODL','LOD','LODU','LOQL','LOQ','LOQU')
Klymus <- read.csv('AssaySummary-ML.csv')
#xdxq.choice.PR <- cbind(Assay=Klymus[,1], xdxq.choice.PR,
xdxq.choice.PR <- cbind(xdxq.choice.PR,
K.LOD8=Klymus[,c(12)], K.LOQ=Klymus[,c(7)])
#write.csv(xdxq.choice.PR, 'Table3.csv')
print(knitr::kable(round(xdxq.choice.PR,
digits=1),
format="pandoc", digits=1,
# caption='Estimates, Critical, Detection, Quantification Limits and CIs',
results="asis"))
if(Manusink){ sink()}
if(Manusink){
sink(file("Outputs\\gBlockData.txt", encoding="UTF-8"),
split=TRUE)
}
for(Targeti in ManuTargets){
jmat <- nndetect[[Targeti]][, c(2:4, 12, 10)]
row.names(jmat) <- NULL
names(jmat) <- c("S", "num.detect", "n", "p.tilde", "lambda.tilde")
print(knitr::kable(jmat,
format="pandoc", digits=3, caption=uTargets[Targeti]),
results="asis")
}
if(Manusink){ sink()}
if(Manusink){
sink(file(paste("Outputs\\gBlockResults.txt", sep=""),
encoding="UTF-8"), split=TRUE)
}
# Print regression outputs
for(Targeti in ManuTargets){
if (Calib.choice[Targeti]){
cat("\n", as.character(uTargets[Targeti]), "\n")