-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
52 lines (37 loc) · 1.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import eval_mode
__all__ = ["evaluate"]
def _accuracy(output, target, topk=(1,)):
"""
Computes the top-k accuracy specified values of k (copied from PyTorch source code)
"""
with torch.no_grad():
maxk = max(topk)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
res.append(correct[:k].reshape(-1).float().sum(0, keepdim=True))
return res
def evaluate(
model: nn.Module, dataloader: torch.utils.data.DataLoader
) -> Tuple[float, float]:
losses = []
total_correct1 = 0
total_correct5 = 0
with eval_mode(model), torch.no_grad():
for x, y in dataloader:
x, y = x.cuda(), y.cuda()
pred = model(x)
losses.append(F.cross_entropy(pred, y).item())
correct1, correct5 = _accuracy(pred, y, topk=(1, 5))
total_correct1 += correct1
total_correct5 += correct5
avg_loss = sum(losses) / len(losses)
acc1 = total_correct1 / len(dataloader.dataset)
acc5 = total_correct5 / len(dataloader.dataset)
return avg_loss, acc1.item(), acc5.item()