-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest22.py
134 lines (118 loc) · 3.78 KB
/
test22.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
from nn_recipe.NN.Layers.pooling import*
from nn_recipe.NN.Layers.conv import Conv2D
from nn_recipe.NN.Layers.linear import Linear
from nn_recipe.NN.ActivationFunctions.sigmoid import Sigmoid
from nn_recipe.NN.LossFunctions import *
# from nn_recipe.NN.Op import GD
from nn_recipe.NN.Layers.flatten import Flatten
from nn_recipe.NN import Network
from PIL import Image
import time
# x = np.array([
# [1, 1],
# [2, 3],
# [4, 7],
# [-1, -1],
# [-7, -0.2],
# [-0.1, -3]
# ])
# y = np.array([
# [1],
# [1],
# [1],
# [-10],
# [-10],
# [-10],
# ])
# l1 = Linear(in_dim=2, out_dim=1, activation=Sigmoid())
# l11 = Linear(in_dim=2, out_dim=1, activation=Sigmoid(), weights=np.copy(l1.weights), bias=np.copy(l1.bias))
# net = Network(
# layers=[l11],
# optimizer=GD(learning_rate=0.1),
# )
# loss, it_no = net.train(x, y, epsilon=0.1)
# print(loss)
# print(net.evaluate([-7, -0.2]))
# print("####################################################################################################")
# opt = GD(learning_rate=0.1)
# msl = MeanSquaredLoss()
# for a in range(5):
# out = l1(x)
# loss = msl(y, out)
# print("{}".format(loss))
# delta = msl.local_grad # dL/dy (last layer)
# # print("delta", delta)
# delta = np.multiply(delta.T, l1.local_grad["dZ"]) # delta * ∂y/∂z
# opt.optimize(l1, delta)
# delta = np.dot(delta.T, l1.local_grad["dX"])
#
# # delta = np.multiply(delta.T, l1.local_grad["dZ"]) # delta * ∂y/∂z
# # opt.optimize(l1, delta)
# print(l1.weights)
# print(l1.bias)
# print(l2.weights)
# print(l2.bias)
# print(l2(l1(np.array([[5,5]]))))
from nn_recipe.Opt import GD
from nn_recipe.utility import OneHotEncoder
"""
# fig, ax = plt.subplots(nrows=0,ncols=6)
ex = np.arange(0, 16).reshape((4,4,1))
fltr = np.array([[0,1,0],[0,1,0],[0,1,0]]).reshape((1,3,3,3))
#print(fltr.shape)
#dL = np.array([[-4,-2],[3,-5]]).reshape((1,2,2,1))
# print(fltr.shape)
conv_ex = Conv2D(inChannels=1, filters=1, filters_values=fltr, padding="VALID")
conv_out = conv_ex(ex)
print("weighs", conv_ex.weights)
print(conv_out, conv_out.shape)
print(conv_ex._calc_local_grad(dL))
# print("local grads", conv_ex.local_grad)
# for i in range(1, conv_out.shape[3]+1):
# plt.subplot(1, 6, i)
# plt.imshow(conv_out[0, :, :, i-1])
# plt.imshow(conv_out[0])
# plt.show()
"""
# ------------------------------------------------
# ex = np.arange(0, 16).reshape((4,4))
# temp = np.empty((1, 4, 4, 3))
# for i in range(3):
# temp[0, :, :, i] = ex
fltr = np.array([[0,0,0],[0,1,0],[0,0,0]]).reshape((1,3,3,1))
sobel_fltr = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]]).reshape((1,3,3,1))
blur_fltr = np.ones((1,3,3,1))/9
edge_fltr = np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]).reshape((1,3,3,1))
img = Image.open(r'C:\\Users\\mgtmP\\Desktop\\test.png').convert("RGB")
conv_ex = Conv2D(inChannels=3, filters=3, padding="VALID")
t2 = time.time()
conv_out = conv_ex(np.array(img)) # temp
Image.fromarray(conv_out[0].astype(np.uint8) ,"RGB").show()
# pooling
p1 = MaxPool2D(kernelSize=3, strides=2, padding="VALID")
p1_out = p1(conv_out)
Image.fromarray(p1_out[0].astype(np.uint8) ,"RGB").show()
flat = Flatten()
f_out = flat(p1_out)
b, _, cols = f_out.shape
# print (s1*s2*n_c)
l1 = Linear(in_dim=cols, out_dim=3, activation=Sigmoid())
print('time taken', time.time()-t2)
out = l1(f_out[0])
Y = np.array(["Andrew"]).reshape(-1,1)
encoder = OneHotEncoder(
types=["Andrew", "Mariam"],
active_state=1,
inactive_state=0
)
gd = GD()
encoded_Y = encoder.encode(Y)
loss = MClassLogisticLoss()
loss_val = loss(encoded_Y, out)
delta = loss.local_grad
delta = np.multiply(delta.T, l1.local_grad["dZ"]) # delta * ∂y/∂z
gd.optimize(layer=l1, delta=delta)
delta = np.dot(delta.T, l1.local_grad["dX"])
print(delta)
# print(l1(f_out[0]))