-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathausil.py
172 lines (129 loc) · 6.88 KB
/
ausil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import tensorflow as tf
tf.disable_v2_behavior()
import time
usegpu = True
class PCA_layer(object):
def __init__(self, dims=2528):
with tf.variable_scope('PCA'):
self.mean = tf.get_variable('mean_sift', dtype=tf.float32, trainable=False, shape=(dims,) )
self.weights = tf.get_variable('weights', dtype=tf.float32, trainable=False, shape=(dims,dims))
def __call__(self, logits):
logits = logits - self.mean
logits = tf.tensordot(logits, self.weights, axes=1)
return logits
class Attention_layer(object):
def __init__(self, dims=2528):
with tf.variable_scope('attention_layer'):
self.context_vector = tf.get_variable('context_vector', dtype=tf.float32,
trainable=False, shape=(dims, 1))
def __call__(self, logits):
weights = tf.tensordot(logits, self.context_vector, axes=1) / 2.0 + 0.5
return tf.multiply(logits, weights), weights
class Video_Comparator(object):
def __init__(self):
self.conv1 = tf.keras.layers.Conv2D(32, [3, 3], activation='relu')
self.mpool1 = tf.keras.layers.MaxPool2D([2, 2], 2)
self.conv2 = tf.keras.layers.Conv2D(64, [3, 3], activation='relu')
self.mpool2 = tf.keras.layers.MaxPool2D([2, 2], 2)
self.conv3 = tf.keras.layers.Conv2D(128, [3, 3], activation='relu')
self.fconv = tf.keras.layers.Conv2D(1, [1, 1])
def __call__(self, sim_matrix):
with tf.variable_scope('video_comparator'):
sim = tf.reshape(sim_matrix, (1, tf.shape(sim_matrix)[0], tf.shape(sim_matrix)[1], 1))
sim = tf.pad(sim, [[0, 0], [1, 1], [1, 1], [0, 0]], 'SYMMETRIC')
sim = self.conv1(sim)
sim = self.mpool1(sim)
sim = tf.pad(sim, [[0, 0], [1, 1], [1, 1], [0, 0]], 'SYMMETRIC')
sim = self.conv2(sim)
sim = self.mpool2(sim)
sim = tf.pad(sim, [[0, 0], [1, 1], [1, 1], [0, 0]], 'SYMMETRIC')
sim = self.conv3(sim)
sim = self.fconv(sim)
sim = tf.squeeze(sim, [0, 3])
sim = tf.clip_by_value(sim, -1, 1) # Hard tanh
return sim
class AuSiL(object):
def __init__(self, model_dir, load_queries=False, queries_number=None, gpu_id=0):
with tf.device('/gpu:%s' % gpu_id):
self.load_queries = load_queries
self.pca_layer = PCA_layer()
self.att_layer = Attention_layer()
self.vid_comp = Video_Comparator()
self.frames = tf.placeholder(tf.float32, [None, 2528], name='frames')
self.embeddings = self.extract_features(self.frames)
if self.load_queries: # Load queries on GPU memory.
self.queries = [tf.Variable( np.zeros( (1,2528) ), dtype=tf.float32, validate_shape=False)
for _ in range(queries_number)]
self.candidate = tf.placeholder(tf.float32, [None, None], name='candidate')
self.similarities = []
for q in self.queries:
sim = tf.matmul(q, tf.transpose(self.candidate)) # Sim Matrix
sim = self.vid_comp(sim)
sim = self.chamfer_similarity(sim)
self.similarities.append(sim)
else: # Do NOT load queries on GPU memory.
self.query = tf.placeholder(tf.float32, [None, None], name= 'query')
self.candidate = tf.placeholder(tf.float32, [None, None], name='candidate')
sim = tf.matmul(self.query, tf.transpose(self.candidate)) # Similarity Matrix
self.before = sim # Similarity Matrix
sim = self.vid_comp(sim)
self.after = sim # CNN output
self.similarity = self.chamfer_similarity(sim) # Overall Similarity
# Without this (next 2 lines), ERROR occurs
x = tf.Variable(tf.zeros([100, 100])) # Without this, ERROR occurs
self.vid_comp(x)
init = self.load_model(model_dir)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self.sess.run(init)
def extract_features(self, features):
features = tf.nn.l2_normalize(features, -1, epsilon=1e-15)
features = self.pca_layer(features)
features = tf.nn.l2_normalize(features, -1, epsilon=1e-15)
features, weights = self.att_layer(features)
return features
def get_features(self, frames):
features = self.sess.run(self.embeddings, feed_dict={self.frames: frames})
return features
def chamfer_similarity(self, sim, max_axis=1, mean_axis=0):
sim = tf.reduce_max(sim, axis=max_axis, keepdims=True)
sim = tf.reduce_mean(sim, axis=mean_axis, keepdims=True)
return tf.squeeze(sim, [max_axis, mean_axis])
def calculate_sim(self, candidate):
candidate = self.sess.run(self.embeddings, feed_dict={self.frames: candidate})
if self.load_queries:
sim = self.sess.run(self.similarities, feed_dict={self.candidate: candidate})
else:
sim = [self.calculate_sim_single(q, candidate) for q in self.queries]
return sim
def calculate_sim_single(self, query, candidate):
return self.sess.run(self.similarity, feed_dict={self.query:query, self.candidate:candidate})
def calculate_sim_one_to_one(self, query, candidate):
query = self.sess.run(self.embeddings, feed_dict={self.frames: query})
candidate = self.sess.run(self.embeddings, feed_dict={self.frames: candidate})
before = self.sess.run(self.before, feed_dict={self.query: query, self.candidate: candidate})
after = self.sess.run(self.after, feed_dict={self.query: query, self.candidate: candidate})
start = time.time()
sim = self.sess.run(self.similarity, feed_dict={self.query: query, self.candidate: candidate})
end = time.time()
timer = end-start
return sim, timer, before, after
def load_model(self, model_path):
previous_variables = [var_name for var_name, _ in tf.contrib.framework.list_variables(model_path)]
restore_map = {variable.op.name: variable for variable in tf.global_variables()
if variable.op.name in previous_variables}
print('{} layers loaded'.format(len(restore_map)))
#print(tf.contrib.framework.list_variables(model_path))
print(restore_map)
#print(tf.global_variables())
tf.contrib.framework.init_from_checkpoint(model_path, restore_map)
tf_init = tf.global_variables_initializer()
return tf_init
def set_queries(self, queries):
if self.load_queries:
for i in range(len(queries)):
self.sess.run(tf.assign(self.queries[i], queries[i], validate_shape=False))
else:
self.queries = queries