-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsuspicious-detection.py
311 lines (236 loc) · 13.3 KB
/
suspicious-detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import logging
import itertools
import numpy as np
from joblib import Parallel, delayed
from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, GradientBoostingClassifier
from sklearn.grid_search import ParameterGrid
from sklearn.metrics import roc_auc_score, precision_score, recall_score
from tldextract import TLDExtract
from binlog_reader import binlog_reader
logger = logging.getLogger(__name__)
class DomainFilter(object):
def __init__(self):
self._extract = TLDExtract(include_psl_private_domains=True)
def transform(self, domain):
return self._extract(domain).registered_domain
def ga_similarities(ipl_1, ipl_2):
a, b = float(len(ipl_1)), float(len(ipl_2))
c = float(len(ipl_1 & ipl_2))
return 0.5 * (c / a + c / b), c / len(ipl_1 | ipl_2), int(c)
def group_activities(all_domains, domain2ip_by_hour):
logger.debug("Calculating group activity")
result = {domain: dict() for domain in all_domains}
pairs = list(filter(lambda (x, y): x < y, itertools.permutations(range(len(domain2ip_by_hour)), 2)))
feature_name_pattern = "({}, {})_{}"
for idx, domain in enumerate(all_domains):
for curr, other in pairs:
fst_hour, snd_hour = domain2ip_by_hour[curr].get(domain), domain2ip_by_hour[other].get(domain)
sim, jcd, ln = 0., 0., 0.
if fst_hour and snd_hour:
sim, jcd, ln = ga_similarities(fst_hour, snd_hour)
result[domain].update({feature_name_pattern.format(curr, other, "sim"): sim,
feature_name_pattern.format(curr, other, "jcd"): jcd,
feature_name_pattern.format(curr, other, "length"): ln})
if (idx + 1) % 100000 == 0:
logger.debug("Processed %d domains", idx + 1)
return result
def ranking(ip2d, d2ip, X, y, init_abs_score=10, n_iter=20):
logger.debug("Calculating rank scores")
rank_ip = {ip: {'sc_score': 0., 'black_score': 0., 'white_score': 0.} for ip in ip2d}
rank_d = {d: {'sc_score': 0., 'black_score': 0., 'white_score': 0.} for d in d2ip}
for dom, cls in zip(X, y):
if cls == 1:
rank_d[dom]['sc_score'] = -float(init_abs_score)
rank_d[dom]['black_score'] = -float(init_abs_score)
elif cls == -1:
rank_d[dom]['sc_score'] = float(init_abs_score)
rank_d[dom]['white_score'] = float(init_abs_score)
for it in range(n_iter):
logger.debug("Iteration %d", it + 1)
for ip in rank_ip:
rank_ip[ip]['sc_score'] = sum(rank_d[d]['sc_score'] / len(d2ip[d]) for d in ip2d[ip])
rank_ip[ip]['black_score'] = sum(rank_d[d]['black_score'] / len(d2ip[d]) for d in ip2d[ip])
rank_ip[ip]['white_score'] = sum(rank_d[d]['white_score'] / len(d2ip[d]) for d in ip2d[ip])
for domain in rank_d:
rank_d[domain]['sc_score'] = sum(rank_ip[ip]['sc_score'] / len(ip2d[ip]) for ip in d2ip[domain])
rank_d[domain]['black_score'] = sum(rank_ip[ip]['black_score'] / len(ip2d[ip]) for ip in d2ip[domain])
rank_d[domain]['white_score'] = sum(rank_ip[ip]['white_score'] / len(ip2d[ip]) for ip in d2ip[domain])
return rank_d
def read_logfile(fname, fields=("client_ip", "dname")):
with open(fname, 'rb') as infile:
logger.debug("Open file %s", fname)
reader = binlog_reader(infile, fields)
return set([tuple([query[fld] for fld in fields]) for query in reader])
def create_indexes(pairs):
logger.debug("Creating indexes domain2ip & ip2domain")
domain2ip, ip2domain = dict(), dict()
for ip, domain in pairs:
domain2ip.setdefault(domain, set())
domain2ip[domain].add(ip)
ip2domain.setdefault(ip, set())
ip2domain[ip].add(domain)
return domain2ip, ip2domain
def merge_indexes(indexes):
logger.debug("Merge %d indexes to one", len(indexes))
ip2domain_full, domain2ip_full = dict(), dict()
for (d2ip, ip2d) in indexes:
for domain in d2ip:
domain2ip_full.setdefault(domain, set())
domain2ip_full[domain] |= d2ip[domain]
for ip in ip2d:
ip2domain_full.setdefault(ip, set())
ip2domain_full[ip] |= ip2d[ip]
return domain2ip_full, ip2domain_full
def create_domain_indexes(hosts):
logger.debug("Creating indexes host2domain & domain2host")
df = DomainFilter()
domain2host, host2domain = dict(), dict()
for host in hosts:
domain = df.transform(host)
domain2host.setdefault(domain, set())
domain2host[domain].add(host)
host2domain[host] = domain
return domain2host, host2domain
def prepare_trainset(blacklist, whitelist, all_domains):
df = DomainFilter()
with open(blacklist, 'r') as infile:
blacklist_domains = [df.transform(line.strip()) for line in infile]
with open(whitelist, 'r') as infile:
whitelist_domains = [df.transform(line.strip()) for line in infile]
pos, neg = set(filter(lambda d: d, blacklist_domains)), set(filter(lambda d: d, whitelist_domains))
inter = pos & neg
logger.debug("Positive size %d, Negative size %d, Intersection %d, All domains %d",
len(pos), len(neg), len(inter), len(all_domains))
pos, neg = (pos - inter) & all_domains, (neg - inter) & all_domains
logger.debug("Positive after %d, Negative after %d", len(pos), len(neg))
X = list(pos) + list(neg)
y = [1 for _ in range(len(pos))] + [-1 for _ in range(len(neg))]
return np.array(X), np.array(y)
def join_features_by_keys(keys, features_list):
logger.debug("Joining features")
tmp_full = {key: dict() for key in keys}
for domain in tmp_full:
for features in features_list:
tmp_full[domain].update(features[domain])
all_features = sorted(tmp_full[keys[0]].keys())
logger.debug("Features - %s", ','.join(str(x) for x in all_features))
return np.array([[tmp_full[domain][f] for f in all_features] for domain in keys])
def cacl_stat(y_test, out_lab):
tp, tn, fp, fn = 0, 0, 0, 0
for true, pred in zip(y_test, out_lab):
if true == pred:
if pred == 1:
tp += 1
else:
tn += 1
elif true == 1:
fn += 1
else:
fp += 1
return tp, tn, fp, fn
def learn_clf(classifier, param, X_train, y_train, X_test, y_test):
clf = classifier(**param)
clf.fit(X_train, y_train)
out = clf.predict_proba(X_test)
out_lab = clf.predict(X_test)
if len(out.shape) == 2:
out = out[:, np.where(clf.classes_ == 1)[0][0]]
return classifier, param, {"roc-auc": roc_auc_score(y_test, out),
"tp-tn-fp-fn": cacl_stat(y_test, out_lab),
"precision": precision_score(y_test, out_lab),
"recall": recall_score(y_test, out_lab)}
def grid_search(grid, X_train, y_train, X_test, y_test):
logger.debug("Start grid search")
with Parallel(n_jobs=-1, backend="multiprocessing") as parallel:
result = parallel(delayed(learn_clf)(clf, param, X_train, y_train, X_test, y_test)
for (clf, param) in grid)
logger.debug("End grid search")
return result
def make_predictor(X, y, ip2domain_full, domain2ip_full, const_features, n_folds, n_iter):
logger.debug("Creating classifier, n_folds = %d", n_folds)
skf = StratifiedKFold(y, n_folds=n_folds)
clfs = [
(AdaBoostClassifier, {"n_estimators": [30, 50, 100, 150, 200, 250, 300],
"learning_rate": [1., 0.8, 0.5, 0.1, 0.05]}),
(RandomForestClassifier, {"n_estimators": range(10, 150, 10),
"criterion": ["gini", "entropy"],
"max_features": ["sqrt", "log2", None]}),
# (GradientBoostingClassifier, {"learning_rate": [0.07, 0.1, 0.3],
# "n_estimators": [50, 100, 200],
# "max_depth": range(2, 5)})
]
grid = [(clf, param) for clf, parameters in clfs for param in ParameterGrid(parameters)]
full_scores = {(clf, frozenset(param.items())): {"roc-auc": [],
"tp-tn-fp-fn": [],
"precision": [],
"recall": []} for (clf, param) in grid}
for idx, (train_index, test_index) in enumerate(skf):
logger.debug("Folding iteration #%d", idx + 1)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
rank_features = ranking(ip2domain_full, domain2ip_full, X_train, y_train,
init_abs_score=10, n_iter=n_iter)
X_features_train = join_features_by_keys(X_train, [const_features, rank_features])
X_features_test = join_features_by_keys(X_test, [const_features, rank_features])
res = grid_search(grid, X_features_train, y_train, X_features_test, y_test)
for clf, param, score in res:
for metric in score:
full_scores[(clf, frozenset(param.items()))][metric].append(score[metric])
final_score = [(clf_class, params, {"roc-auc": np.mean(full_scores[(clf_class, params)]["roc-auc"]),
"precision": np.mean(full_scores[(clf_class, params)]["precision"]),
"recall": np.mean(full_scores[(clf_class, params)]["recall"]),
"TP": np.mean([x[0] for x in full_scores[(clf_class, params)]["tp-tn-fp-fn"]]),
"TN": np.mean([x[1] for x in full_scores[(clf_class, params)]["tp-tn-fp-fn"]]),
"FP": np.mean([x[2] for x in full_scores[(clf_class, params)]["tp-tn-fp-fn"]]),
"FN": np.mean([x[3] for x in full_scores[(clf_class, params)]["tp-tn-fp-fn"]])})
for (clf_class, params) in full_scores]
final_score.sort(key=lambda _: _[2]["roc-auc"], reverse=True)
logger.info("Top 50 params")
for idx, (c, p, s) in enumerate(final_score[:50]):
logger.debug("# %d | Clf: %s, params: %s, scores: %s", idx + 1, c.__name__, str(p), str(s))
final_clf = final_score[0][0](**dict(final_score[0][1]))
return final_clf
def processing(logfiles, blacklist, whitelist, output_file, n_folds, n_iter):
queries = [read_logfile(fn, ("client_ip", "dname")) for fn in sorted(logfiles)]
hosts = set([domain for (ip, domain) in itertools.chain.from_iterable(queries)])
domain2host, host2domain = create_domain_indexes(hosts)
queries = [[(ip, host2domain[domain]) for (ip, domain) in hour] for hour in queries]
queries = [set(filter(lambda (_, dom): dom, hour)) for hour in queries]
small_indexes = [create_indexes(hour) for hour in queries]
domain2ip_full, ip2domain_full = merge_indexes(small_indexes)
all_domains = set(domain2ip_full.keys())
domain2ip_by_hour = [d2ip for (d2ip, ip2d) in small_indexes]
X, y = prepare_trainset(blacklist, whitelist, all_domains)
ga_features = group_activities(all_domains, domain2ip_by_hour)
clf = make_predictor(X, y, ip2domain_full, domain2ip_full, ga_features, n_folds, n_iter)
rank_final_features = ranking(ip2domain_full, domain2ip_full, X, y, init_abs_score=10, n_iter=n_iter)
X_final = join_features_by_keys(X, [ga_features, rank_final_features])
clf.fit(X_final, y)
all_domains = list(all_domains)
X_full = join_features_by_keys(all_domains, [ga_features, rank_final_features])
result_prob, result_bin = clf.predict_proba(X_full)[:, np.where(clf.classes_ == 1)[0][0]], clf.predict(X_full)
labeled_domains = {x: lab for x, lab in zip(X, y)}
to_file = sorted(zip(all_domains, result_prob, result_bin), key=lambda x: x[1], reverse=True)
logger.debug("Save result to %s", output_file)
with open(output_file, 'w') as outfile:
for d, prob, lab in to_file:
in_train = labeled_domains.get(d, 0)
outfile.write("{}\t{}\t{}\t{}\t{}\n".format(d, prob, lab, ",".join(domain2host[d]), in_train))
def main():
parser = argparse.ArgumentParser(description="Suspicious domain detector (used querylog)")
parser.add_argument('-f', '--files', help='Files with logs', required=True, nargs='*')
parser.add_argument('-b', '--blacklist', help='Path to blacklist', required=True, type=str)
parser.add_argument('-w', '--whitelist', help='Path to whitelist', required=True, type=str)
parser.add_argument('-o', '--output', help='Path to output prediction', required=True, type=str)
parser.add_argument('-v', '--verbose', help='Verbose flag', action='store_const', dest="loglevel",
const=logging.DEBUG, default=logging.WARNING)
parser.add_argument('--n_folds', help='Number of folds in cv stage', default=4, type=int)
parser.add_argument('--n_iter', help='Number of iteration for rank calc', default=20, type=int)
args = parser.parse_args()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=args.loglevel)
return processing(args.files, args.blacklist, args.whitelist, args.output,
args.n_folds, args.n_iter)
if __name__ == '__main__':
exit(main())