forked from EcoForecast/PhenologyForecast
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinitial.ensemble.forecast.R
107 lines (85 loc) · 3.81 KB
/
initial.ensemble.forecast.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
initial.ensemble.FM <- function(site_num){
source("SSLPM.r") ## Super Simple Logistic Model
source("ciEnvelope.R")
source("global_input_parameters.R")
########################################
#### dummy values for debugging ########
########################################
site_num=1
#########################################
#########################################
### read in output from State Space Model for X and r
file_name = paste('Jags.SS.out.site',as.character(site_num), 'RData',sep=".")
load(file_name)
X.from.SS = as.matrix(jags.out.all.years.array[,5,]) # 5 is the first guess from X
r.from.SS = as.matrix(jags.out.all.years.array[,1,])
# Remove state estimates that are < 0 and > 1 (we know they are WRONG)
X.from.SS.NA = X.from.SS
II = which(X.from.SS.NA<0 | X.from.SS.NA>1 )
X.from.SS[II] = NA;
r.from.SS[II] = NA;
#initial values for each ensemble member (average of all years of historical data)
X.orig=apply(X.from.SS,1,mean,na.rm=TRUE)
r.orig=apply(r.from.SS,1,mean,na.rm=TRUE)
#take ensemble size from the size of the SS fit ensemble
ne = 1000 # length(X.orig)
# Pulls from a distrubtion... need to work on this
r.orig.dist = sample(r.orig,size=ne)
X.orig.dist = sample(X.orig,size=ne)
## Create vector for time to current date
# cur_date = Sys.Date()
# doy <- strftime(cur_date, format = "%j")
# time = global_input_parameters$model.start.DOY:doy
time = global_input_parameters$model.start.DOY:365 # Changed so it predicts the whole year
nt = length(time)
#### generate initial ensemble forecast
output = array(NA,c(nt,ne,2))
X = X.orig.dist
r = r.orig.dist
for(t in 1:nt){
output[t,,]=as.matrix(SSLPM(X,r))
X=output[t,,1]
r=output[t,,2]
}
#### save plots produced to PDF
## name of output file
file_name = paste('initial.ensemble.forecast',as.character(site_num), 'pdf',sep=".")
## saves as PDF
pdf(file=file_name)
#plot mean and CI of ensemble members time series
ci = apply(output[,,1],1,quantile,c(0.025,0.5,0.975),na.rm=TRUE)
plot(time,ci[2,],ylim=c(0,1),xlab="time",ylab="X",type='l')
ciEnvelope(time,ci[1,],ci[3,],col="light blue")
lines(time,ci[2,])
ci = apply(output[,,2],1,quantile,c(0.025,0.5,0.975),na.rm=TRUE)
plot(time,ci[2,],ylim=c(-1,1),xlab="time",ylab="r",type='l')
ciEnvelope(time,ci[1,],ci[3,],col="light blue")
lines(time,ci[2,])
############## Uncertainty: plot ensemble forecast and observed data so far.
# Get data from one site and one year
hist_data = read.csv("full_historical_data.csv")
site_data = subset(hist_data,hist_data$site_ID == site_num)
time2=site_data$date
time_year = as.numeric(format(as.Date(time2), "%Y"))
max_NDVI <- max(site_data$NDVI,na.rm=TRUE)
min_NDVI <- min(site_data$NDVI,na.rm=TRUE)
max_GCC <- max(site_data$GCC,na.rm=TRUE)
min_GCC <- min(site_data$GCC,na.rm=TRUE)
rescaled_NDVI <- (site_data$NDVI-min_NDVI)/(max_NDVI-min_NDVI)
rescaled_GCC <- (site_data$GCC-min_GCC)/(max_GCC-min_GCC)
II = which(time_year==2013)
gcc2013 = rescaled_GCC[II]
ndvi2013 = rescaled_NDVI[II]
ci = apply(output[,,1],1,quantile,c(0.025,0.5,0.975),na.rm=TRUE)
plot(time,ci[2,],ylim=c(0,1),xlab="time",ylab="X",type='l')
ciEnvelope(time,ci[1,],ci[3,],col="light blue")
points(global_input_parameters$model.start.DOY:365,gcc2013[global_input_parameters$model.start.DOY:365],pch="+",cex=0.8)
points(global_input_parameters$model.start.DOY:365,ndvi2013[global_input_parameters$model.start.DOY:365],pch="o",cex=0.8)
lines(time,ci[2,])
## ends plot output to PDF
dev.off()
## name of initial ensemble forecast file
sprintf('The initial ensemble forecast for site No %.f is saved as %s',site_num,file_name)
############## Sensitivity
# Since there is no environmental/climate driver, what are we taking the sensitivity of?
}