-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathts-cross-validate.R
66 lines (55 loc) · 1.74 KB
/
ts-cross-validate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#Setup
rm(list = ls(all = TRUE))
#Function to cross-validate a time series.
cv.ts <- function(x, FUN, tsControl, ...) {
#Load required packages
stopifnot(is.ts(x))
stopifnot(require(forecast))
stopifnot(require(foreach))
stopifnot(require(plyr))
#Load parameters from the tsControl list
stepSize <- tsControl$stepSize
maxHorizon <- tsControl$maxHorizon
minObs <- tsControl$minObs
fixedWindow <- tsControl$fixedWindow
summaryFunc <- tsControl$summaryFunc
#Define additional parameters
freq <- frequency(x)
n <- length(x)
st <- tsp(x)[1]+(minObs-2)/freq
#Create a matrix of actual values, that we will later compare to forecasts.
#X is the point in time, Y is the forecast horizon
formatActuals <- function(x,maxHorizon) {
actuals <- outer(seq_along(x), seq_len(maxHorizon), FUN="+")
actuals <- apply(actuals,2,function(a) x[a])
actuals
}
actuals <- formatActuals(x,maxHorizon)
actuals <- actuals[minObs:(length(x)-1),]
#At each point in time, calculate 'maxHorizon' forecasts ahead
#This is the 'Main Function'
forcasts <- foreach(i=1:(n-minObs), .combine=rbind, .multicombine=FALSE) %dopar% {
if (fixedWindow) {
xshort <- window(x, start=st+(i-minObs+1)/freq, end=st+i/freq)
} else {
xshort <- window(x, end=st + i/freq)
}
return(FUN(xshort, h=maxHorizon, ...))
}
#Asess Accuracy at each horizon
out <- data.frame(
ldply(1:maxHorizon,
function(horizon) {
P <- forcasts[,horizon]
A <- na.omit(actuals[,horizon])
P <- P[1:length(A)]
summaryFunc(P,A)
}
)
)
#Calculate mean accuracy across all horizons
overall <- colMeans(out)
out <- rbind(out,overall)
#Add a column for which horizon and output
return(data.frame(horizon=c(1:maxHorizon,'All'),out))
}