-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreorientation_problem.py
177 lines (142 loc) · 5.85 KB
/
reorientation_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 7 23:04:46 2024
@author: mark
"""
import numpy as np
import openmdao.api as om
import dymos as dm
from scipy.spatial.transform import Rotation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation
from matplotlib.quiver import Quiver
# from dm.visualization.timeseries_plots import timeseries_plots
from trajectory.reorientation_ode import ODE
p = om.Problem()
p.driver = om.pyOptSparseDriver()
p.driver.options["optimizer"] = "IPOPT"
p.driver.declare_coloring()
# p.driver.opt_settings["tol"] = 1.0e-6
p.driver.opt_settings["max_iter"] = 300
p.driver.opt_settings["print_level"] = 1
p.driver.options["print_results"] = False
# p.driver.opt_settings["mu_strategy"] = "monotone"
# p.driver.opt_settings["bound_mult_init_method"] = "mu-based"
# p.driver.opt_settings["mu_init"] = 1
t = dm.Radau(num_segments=50, order=3)
# t = dm.Birkhoff(grid=dm.BirkhoffGrid(nodes_per_seg=100))
traj = dm.Trajectory()
phase = dm.Phase(ode_class=ODE, transcription=t)
traj.add_phase("phase0", phase)
p.model.add_subsystem("traj", traj)
phase.set_time_options(fix_initial=True, duration_bounds=(1, 60), duration_ref=1)
# mass
# position
# phase.add_state("x", fix_initial=True, units="m", rate_source="V_i")
# velocity in body frame coordinate system
phase.add_state("V_b", fix_initial=True, units="m/s", rate_source="V_b_rate", targets=["V_b"])
# angular velocity in body frame system
phase.add_state("w_b", fix_initial=True, units="rad/s", rate_source="w_b_rate", targets=["w_b"])
# body frame to inertial frame rotation quaternion
phase.add_state("R", fix_initial=True, rate_source="R_rate", targets=["R"])
# gymbal controls
phase.add_control("M_control", opt=True, targets=["M_total_b"], lower=-50, upper=50, units="N*m")
# F-18 mass props
I_mat = np.array(
[
[5621, 0, 0],
[0, 4547, 0],
[0, 0, 2364],
]
)
# SSTO moment of inertia
phase.add_parameter("I", val=I_mat, units="kg*m**2", targets=["I"])
# test mixing wildcard ODE variable expansion and unit overrides
# phase.timeseries_options["include_parameters"] = False
phase.add_timeseries_output(["w_i", "w_b", "M_i", "X_i", "Y_i", "Z_i", "M_control", "g_i_2"])
# phase.add_timeseries_output("*")
phase.add_objective("time", loc="final", scaler=1)
phase.add_boundary_constraint("R_normed", loc="final", equals=np.array([1, 0, 0, 0]))
# p.model.linear_solver = om.DirectSolver()
p.driver.declare_coloring()
p.setup()
p["traj.phase0.t_initial"] = 0.0
p["traj.phase0.t_duration"] = 40.0
# p["traj.phase0.states:m"] = phase.interp("m", [m_init, m_fin])
# p["traj.phase0.states:x"] = phase.interp("x", [0, 1e6])
p["traj.phase0.states:w_b"] = phase.interp("w_b", [[0, 0, 0], [0, 0.0, 0.0]])
p["traj.phase0.states:V_b"] = phase.interp("V_b", [[0, 0, 0], [0, 0, 0]])
# initial inertial to body frame rotation. Z yaw, Y pitch, X roll
# rot = Rotation.from_euler("ZYX", [0, 90, 0], degrees=True)
rot = Rotation.from_euler("ZYX", [0, 45, 45], degrees=True)
# rot = Rotation.from_euler("ZYX", [23, 45, -45], degrees=True)
# invert it for body to inertial, turn into quat intp format with w first instead of last
p["traj.phase0.states:R"] = np.roll(rot.inv().as_quat(), 1)
# dm.run_problem(p, run_driver=False, simulate=False, make_plots=False)
dm.run_problem(p, run_driver=True, simulate=False, make_plots=True)
# sim = p.model.traj.simulate(record_file="precession_sim.db")
om.n2(p)
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=[20, 20])
ax1, ax2, ax3, ax4 = axs.flatten()
t = p.get_val("traj.phase0.timeseries.time")
w_i = p.get_val("traj.phase0.timeseries.w_i")
w_b = p.get_val("traj.phase0.timeseries.w_b")
M_b = p.get_val("traj.phase0.timeseries.M_control")
M_i = p.get_val("traj.phase0.timeseries.M_i") / 50
X_i = p.get_val("traj.phase0.timeseries.X_i")
Y_i = p.get_val("traj.phase0.timeseries.Y_i")
Z_i = p.get_val("traj.phase0.timeseries.Z_i")
g_i = p.get_val("traj.phase0.timeseries.g_i_2")
w_i_normed = w_i / np.linalg.norm(w_i, axis=1)[:, np.newaxis]
ax1.plot(t, w_i, label="w inertial")
ax3.plot(t, X_i, label="body X axis")
ax2.plot(t, w_b, label="w body")
ax4.plot(t, M_b, label="M control")
ax1.legend()
ax2.legend()
ax3.legend()
# ax3 = plt.figure(figsize=[10, 10]).add_subplot(projection="3d")
# ax3.quiver(0, 0, 0, w_i[:, 0], w_i[:, 1], w_i[:, 2], color="b")
# # ax3.quiver(0, 0, 0, w_b[:, 0], w_b[:, 1], w_b[:, 2],color="r")
# # ax3.quiver(0,0,0,1,1,1)
# ax3.set_xlim(-1, 1)
# ax3.set_ylim(-1, 1)
# ax3.set_zlim(-1, 1)
fig, ax = plt.subplots(subplot_kw=dict(projection="3d"), figsize=[15, 15])
Q4 = ax.quiver(0, 0, 0, M_i[0, 0], M_i[0, 1], M_i[0, 2], color="m")
Q1 = ax.quiver(0, 0, 0, X_i[0, 0], X_i[0, 1], X_i[0, 2], color="r")
Q2 = ax.quiver(0, 0, 0, Y_i[0, 0], Y_i[0, 1], Y_i[0, 2], color="g")
Q3 = ax.quiver(0, 0, 0, Z_i[0, 0], Z_i[0, 1], Z_i[0, 2], color="b")
line = ax.plot([], [], [], lw=2, color="m")[0]
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
def update_quiver(frame):
"""updates the horizontal and vertical vector components by a
fixed increment on each frame
"""
global Q1
global Q2
global Q3
global Q4
global line
# Q.remove()
Q1.remove()
Q2.remove()
Q3.remove()
Q4.remove()
Q4 = ax.quiver(0, 0, 0, M_i[frame, 0], M_i[frame, 1], M_i[frame, 2], color="m")
Q1 = ax.quiver(0, 0, 0, X_i[frame, 0], X_i[frame, 1], X_i[frame, 2], color="r")
Q2 = ax.quiver(0, 0, 0, Y_i[frame, 0], Y_i[frame, 1], Y_i[frame, 2], color="g")
Q3 = ax.quiver(0, 0, 0, Z_i[frame, 0], Z_i[frame, 1], Z_i[frame, 2], color="b")
line.set_data(w_i_normed[0:frame, :2].T)
line.set_3d_properties(w_i_normed[:frame, 2])
# you need to set blit=False, or the first set of arrows never gets
# cleared on subsequent frames
anim = animation.FuncAnimation(fig, update_quiver, frames=w_i.shape[0], interval=50, blit=False)
plt.show()